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Abstract

This paper describes a proposal for a standardized
presentation of inorganic crystal-structure data with
the aim to recognize identical or nearly identical
structures from the similarity of the numerical values
of the atom coordinates.

Introduction

For the classification of crystal structures and for
various crystal-chemical considerations of inorganic
and alloy structures it is important to recognize differ-
ent compounds which have identical or nearly iden-
tical atom arrangements.t Owing to the lack of stan-
dards for the description of crystal structures, the lists
of positional coordinates of two identical structures
may not show any correspondence whatsoever. There
are numerous examples in the literature where
isotypici crystal structures were described as different
structure types. This happened even in Struktur-
berichte (1937) where, for example, the types Bl6
(GeS) and B29 (SnS) correspond to the same structure
type and where the types DO, (Fe;C) and D0,
(NiAl;) are nearly identical.

As a simple demonstration, in the upper part of
Table 1(a) the structural data for CeCu, and KHg,
according to Pearson (1967) are given. From a com-
parison of the numerical data the isotypy of the
two structures cannot be recognized immediately
although both are described with the same Hermann-
Mauguin space-group symbol. Not only are the axes
interchanged and the positional coordinates quite
different, but also the Wyckoft letters of the positions
differ. The isotypy was probably recognized only after
drawings of the two structures had been compared.

* The authors have been encouraged by the IUCr Commission
on Crystallographic Data to publish this report. Readers who have
comments or new ideas on crystal-structure data standardization
are asked to contact the authors or the Chairman of the Commission
on Crystallographic Data, Professor I. D. Brown, Institute for
Materials Research, McMaster University, Hamilton, Ontario,
Canada L8S M1.

t This is not a problem for organic structures as there are rarely
compounds with identical or nearly identical atom arrangements.

t In the Angloamerican literature often called isomorphic.
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In this paper a set of rules is proposed for the
standardization of crystal-structure data, the aim of
which is to simplify the task of recognizing identical
or nearly identical structures.§

Previous proposals to standardize crystal-structure data

To our knowledge there exists only one paper on the
standardization of the description of crystal struc-
tures. Schwarzenbach (1963) proposed a set of rules
which were applied to the monoclinic and orthorhom-
bic structure types listed in Smithells (1955). A more
extensive paper in Z. Kristallogr. was announced but
never published.

Other proposals refer only to one aspect of the
standardization problem, namely the cell reduction
for triclinic and monoclinic crystals and the labelling
of the axes. A unique description of a lattice is the
reduced set of basis vectors defined by Niggli (1928)
and re-introduced by Buerger (1960). The definition
of this reduced cell can also be found in Mighell
(1976) and in International Tables for Crystallography
(1983), Vol. A, §9.3; this reference gives for each of
the 44 types of reduced cell the reduced form and
the transformation matrices relating the reduced cell
to a corresponding conventional cell; see also Mighell
& Rodgers (1980).

The Hermann-Mauguin space group in a standard
setting as given in International Tables for X-ray Crys-
tallography (1983), Vol. A (see later) permits in certain
cases the labelling of one or more axes without
ambiguity. However, for the labelling of the axes in
the absence of requirements imposed by the standard
space group, two different conventions can be found
in the literature:

(1) a<b<c (abc rule) was proposed by Buerger
(1942) and Balashov (1956);

§ No efforts will be made here to define the limits of isotypy:
however, the results of a standardization of crystal-structure data
could serve as basis for further discussions on isotypy. Some
structures may not really be isotypic but only isopuntal, which
means they have the same space group and the same occupation
of Wyckoff positions with the same adjustable parameters, but
different unit-cell ratios and different atom coordinations.

© 1984 International Union of Crystallography
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(2) c<a<b (cab rule) was proposed by Donnay,
Tunell & Barth (1934) and Donnay (1943). It was
intended to smoothen the transition from the older
morphological to the newer structural description of
minerals.

However, no generally accepted rules exist for the
labelling of axes.

There exist two extensive compilations of lattice
parameters. In Crystal Data Determinative Tables
(1973-1981), the cab rule has been applied to all
triclinic, monoclinic and orthorhombic unit cells,
whereas in the National Bureau of Standards Single
Crystal Identification Data Base (1981) the abc rule
is adopted for the description of Niggli reduced cells.
In both compilations many structures are thus
described with a non-standard space-group setting.

Some general considerations

It is evident that in the absence of any (arbitrary)
rules there exist an infinite number of possible struc-
ture descriptions. The rules can be based either on
the geometry of the structure or on the symmetry of
the atom arrangement.

In the view of a crystal chemist the most appropri-
ate description would be one which allows
geometrical relationships to other structures to be
seen. Unfortunately, this cannot serve as a basis for
a standard description since, depending on the struc-
tures to be compared, different descriptions might be
needed.* Furthermore, the recognition of relation-
ships between structures is exposed to subjective
interpretation.

Geometrical relationships between structures with
different symmetry might be discovered by comparing
the atomic positions in the Niggli reduced cells of
the structures. This method has the disadvantage of
imposing a structure description which deviates com-
pletely from our conventional way of describing crys-
tal structures and therefore does not seem appropriate
for application on a large scale.

The symmetry of the atom arrangement, together
with the conventions of the International Tables of
Crystallography (1983) of putting the symmetry axes
along a, b, ¢ and the way the Wyckoff positions are
written down, can serve as a basis for a standard.
However, as demonstrated above with CeCu, and
KHg,, even here different equivalent structure
descriptions are possible, depending on the choice of
the basis vectors (origin, length and direction). Thus,
in addition to the logical choice of describing a struc-

* As an example we can consider the cubic face-centred Cu
structure. For comparison with other close-packed structures like
Mg, Nd or Sm one would choose the triple hexagonal cell, for a
comparison with Cu;Au or CuAu the conventional cubic cell. Thus
there would not even be an agreement on what kind of unit cell
one should use for the standard.
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ture with the standard Hermann-Mauguin space
group it will be necessary in certain cases to have
extra rules.

Different ways to describe a crystal structure in a
standard Hermann—Mauguin space group

In order to find out which extra rules are needed for
standardization, it is necessary to study the different
possibilities of describing a structure with different
numerical values for the positional coordinates after
having decided on the space group, the basis vectors
of the unit cell and the choice of the representative
triplet from a given Wyckoft position (to be discussed
later).

Different structure descriptions can be obtained by

(1) shift of origin of the coordinate system (unit
cell);

(2) rotation of the coordinate system (unit cell);

(3) inversion of the basis-vector triplet (or reflec-
tion of one basis vector).

The last operation needs a special comment. Since
we use by convention a right-handed coordinate sys-
tem, the inversion of the basis vectors is in principle
not permitted. However, it corresponds to a rep-
resentation of the inverted original structure in a
right-hand coordinate system.

The different possible descriptions of a crystal
structure in a standard space-group setting can be
derived from the corresponding Cheshire group
(Hirshfeld, 1968) [also called Euclidean normalizer
(Fischer & Koch, 1983)]. The elements of the Cheshire
group describe the symmetry of the arrangement of
symmetry elements in a given space group. A group
theoretical definition of a Euclidean normalizer can
be found in appropriate text books, such as, for
example, Schenkman (1975), and has been discussed
by Gubler (1982). As the details of the application of
Euclidean normalizers have been treated by Fischer
& Koch (1983), we give here only the results and
simple checks on the number of possible descriptions.

In columns E and F of Table 6 are summarized
the different possibilities of describing a crystal struc-
ture assuming a choice of space group and unit cell
as given in columns B, C and D. The possible shifts
of origin of the coordinate system (Giacovazzo, 1980)
are listed in column F. In column E are given non-
redundant xyz triplets. An xyz triplet obtained from
another triplet by a permitted rotation or inversion
of the coordinate system is called non-redundant if
it cannot be obtained either by the symmetry oper-
ations of the space group or by a permitted origin
shift,

The prefixes in column E give information on the
chirality of the corresponding space group. The dispo-
sition of atom sites in a chiral space group (prefixes
C or E in column E) cannot be brought into con-
gruence with its mirror image by translation and/or
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rotation of the coordinate system. The only symmetry
elements present are proper rotation axes (with or
without translation components). The xyz triplets on
the same line are related by rotations of the coordinate
system without change of chirality. An enantiomor-
phic structure setting corresponding to a mirror image
can be obtained by changing the signs of the x, y and
z coordinates of all atoms (second line for each entry
in column E). For three space groups, however,
(I4,, I4,22, F4,32) a shift of origin is also necessary.
In space groups with prefix C the enantiomorphic
structure setting is possible with the same space
group; however, in those with prefix E the enan-
tiomorph structure setting is possible only with the
other space group of the enantiomorphic space-group
pair.

The disposition of atom sites in an achiral space
group (prefix A or no prefix in column E) can be
brought into congruence with its mirror image by
translation and/or rotation of the coordinate system.
Achiral space groups have at least one improper
rotation axis. All chiral and all achiral, non-
centrosymmetric space groups (prefixes C, E and A)
are polar space groups in a broader sense (to be
distinguished from the special case of space groups
with axial polarity, discussed below) which means
they contain a direction and its opposite which are
not related by symmetry. Centrosymmetric space
groups (those without prefix in column E) are non-
polar because the symmetry centre relates every direc-
tion with its opposite. In column E the xyz triplets
on the same line are related by those rotations of the
coordinate system which do not lead to a change of
polarity. The polarity can be changed by changing
the signs of the x, y and z coordinates of all atoms
(second line of each entry in column E). In four space
groups, however, (Fdd2, I4,md, I4,cd, 142d) an
origin shift is also necessary. Contrary to the case of
chiral space groups, where the change of chirality
requires an inversion of the coordinate system, in
achiral non-centrosymmetric space groups the struc-
ture setting with changed polarity could also be
obtained by a rotation and translation of the coordin-
ate system.

A particular case of the polar space groups con-
cerns the space groups with axial polarity which is
defined here to mean those space groups where one
or more polar directions coincide with one or more
axes and where the origin of at least one coordinate
axis cannot be related to the positions of symmetry
elements. The permitted origins (column F) have at
least one freely adjustable parameter and correspond-
ingly at least one of the unit cell vectors of the
Cheshire group (column H) has a factor &. The Che-
shire group (column G) has in this case a ‘degenerate
Bravais lattice’ denoted by Z', Z?, Z* with the super-
script denoting the number of polar coordinate
axes.
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A space group as well as its Cheshire group (column
G of Table 6) is based on a point group (ignoring
translation and glide components) and a translation
subgroup. The point group of the Cheshire group has
at least the same order as the point group of the space
group. The ratio of the two orders (index) corresponds
to the number of non-redundant xyz triplets given in
column E of Table 6.* For enantiomorphic space-
group pairs this calculation gives the total number of
non-redundant xyz triplets for both space groups. In
Table 6 only the xyz triplets for one of the two space
groups are listed.

In general, the number of possible origins (column
F of Table 6) can be obtained by dividing the volume
of the space-group unit cell by the volume of the unit
cell of the corresponding Cheshire group (to be calcu-
lated from the unit-cell vectors of the Cheshire group
listed in column H of Table 6). If, however, the types
of their Bravais lattices differ, each volume has first
to be divided by the number of lattice points in
its unit cell. In space groups with axial polarity,
characterized by degenerate Bravais lattices of the
corresponding Cheshire groups, the origin shifts are
continuous in one, two or three directions, but are
discrete in the remaining direction(s). For each such
space group, the number of entries in column F of
Table 6 can be obtained by a procedure similar to
that for the general case, but disregarding the degener-
ate direction(s).

Example for space group No. 20

Corre-
sponding  Point- Bravais-
point group Basic lattice Unit-cell
group order vectors points volume
Space group
C222, 222 4 ab,c 2 abe
Cheshire group
Pmmm mmm 8 la,lbLe 1 Kabc)

Number of non-redundant xyz triplets: §=2.
abe ,'((abc)
1

These numbers correspond to the number of entries in columns E and F,
respectively, of Table 6 for space group C222,.

Number of possible origins:

The total number of different descriptions (different
numerical values of the representative atom coordin-
ates) can be obtained by multiplying the number of
non-redundant xyz triplets (column E of Table 6) by
the number of permitted origins (column F). Note
that space groups with axial polarity have an infinite
number of possible origins. The maximum number

* In the list of non-redundant xyz triplets it is found for certain
space groups that the rotation or inversion of the coordinate system
requires a translation component (for example in space group Ia3).
This can only occur if the corresponding Cheshire group is asym-
morphic, i.e. contains at least a glide plane or a screw axis in its
symbol.



172

of different descriptions for non-polar space groups
is 24 (space groups P312, P6). For the CeCu, structure
mentioned above with space group Imma (see Table
1(a) there are according to Table 6 four different
descriptions. This applies for a given choice of axes.
The four descriptions for @ <b are listed in Table
1(b). There are four more descriptions with axes a
and b interchanged.

A special case occurs for structures with atoms on
positions which differ by a permitted origin shift
(column F of Table 6). Some of the descriptions may
yield identical atom positions. For example, for CsCl
with space group Pm3m the two descriptions are:

second description

with origin shift 333
1Cs in 1(b) 313
ICl in 1(a) 000.

first description
IClin 1(b) 333
1Cs in 1(a) 000

Proposal for structure data standardization

The following proposal for the standardization of
crystal-structure data™ is the result of our efforts to
establish an alloy structure-type file of limited size
for use in our laboratory. The flow chart of the stan-
dardization procedure is presented in Fig. 1.

*The following standards apply to structures which can be
described with the regular space groups given in International
Tables for Crystallography (1983). No efforts have been made to
include ‘non-commensurate’ charge-density or spin-wave modula-
tions and other unusual structure variations which do not fall into
a three-dimensional lattice.

Choice of unit-cell and space-group setting with the prin-

cipal conventions

(a) standard setting of International Tables for Crystallogra-
phy (1983) (b-axis unique, triple hexagonal unit cell,
symmetry centre at origin)

(b) Niggli reduced cell or cell with a < b < ¢ if not defined
otherwise by symmetry

!

Choice of representative coordinate triplet for all atoms,
taking into account

(a) the permitted origins

(b) the permitted rotations of the coordinate system

(c) the enantiomorphic structure representation

l

Ordering and renumbering of the atoms in the final list

Fig. 1. Flow chart of the standardization procedure.
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Table 1. Structural data for CeCu, and KHg,

(a) Comparison of the structure data for CeCu, and KHg,
Non-standardized data after Pearson (1967)

CeCu, KHg,
Imma, a =4-425, b=7-057, Imma, a =810, b=5-16,
c=7-415A c=877A
x y z x y z
Ce in 4(e) 0 ) 0-5377 K in 4(e) 0 1 0703
Cu in 8(h) 0 0-051 0-1648 Hg in 8(i) 0190 0-087
Standardized data
CeCu, KHg,
Standardization parameter Standardization parameter
I'=0-7655 I'=0-7751
Imma, a =4-425, b=7-057, Imma, a=5-16, b=8-10,
c=17475A c=877A
x y z x y z
Cuin8(h) 0 0051 0-1648 Hgin 8h) 0 0-06 0-163
Ce ind(e) 0 H 0-5377 K inde) 0 F 0-547

KHg, had first to be transformed to a cell where a < b while retaining the standard
Imma space-group setting (shift of origin by i} and interchange of a and b axes) and
then different origins (000, }30D) were tried to find the lowest standardization parameter.

(b) Structure data for CeCu,: the four possible descriptions for a unit cell
with a < b. The coordinate triplets given here have been chosen from the
Wyckoft positions according to the rules explained in the text

(1) Origin shift 000 I'=0-7655 x y z
Cu in 8(h) 0 0-051 0-1648
Ce in 4(e) 0 H 0-5377
(2) Origin shift 00} I'=0-8978 x y z
Cu in 8(h) 0 0-551 0-3352
Ce in 4(e) 0 H 0-0377
(3) Origin shift 00 I'=1-1007 x y 2
Cu in 8(h) 0 0551 0-1648
Ce in 4(e) 0 H 0-4623
(4) Origin shift 04} r=1-3333 x y z
Cu in 8(h) 0 0-051 0-3352
Ce in 4(e) 0 ! 0-9623

Choice of unit cell and space-group setting

(1) Right-handed coordinate system.

(2) Standard space-group setting, as given in the
1983 edition of International Tables for Crystallogra-
phy, Vol. A, with the following additional restrictions:

(a) b-axis setting for monoclinic space groups;+

(b) obverse triple hexagonal unit cell for trigonal
R space groups;

(c) the setting with the symmetry centre at the
origin in all cases where two origin choices are given
in International Tables for Crystallography ;

(d) for the enantiomorphic space-group pairs,
the space group with the smallest index for the rel-
evant screw axis is normally taken as standard (for

 For each monoclinic space group six descriptions are given in
International Tables for Crystallography (1983), three with b unique
and three with ¢ unique. They are characterized by only one
standard short symbol (it appears in large letters at the top of all
pages devoted to a particular space group) which corresponds to
the space-group setting with axis b unique and which has already
been given in the 1935 and 1952 editions.
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example P4,32 instead of P4;32). However, if the
absolute configuration has been determined, it is
important not to lose this information. In this case a
special procedure will be applied which will be
discussed below.

(3)(a) Triclinic cells are chosen such that a, b and
¢ are the shortest three non-coplanar lattice transla-
tion vectors that define the Niggli reduced cell in a
right-handed coordinate system. The cell edges are
labelled so as to have a < b < c. There are two kinds
of triclinic cells. Those of type Il have a = 90°, 8 =90°,
y=90° and those of type I a<90°, B<90° and
v <90°.

(b) Formonoclinic space groups with a primitive
Bravais lattice and without a glide plane a ‘reset’
Niggli reduced cell is used which we define in the
following way: the axes of the Niggli reduced cell of
type I are relabelled so as to obtain a cell with a<c¢
and B =90°.

For monoclinic space groups with centred Bravais
lattices or glide planes we select a and ¢ as the shortest
non-parallel lattice translation vectors perpendicular
to b — under the condition that 8 is non-acute — which
allow the structure to be described with the standard
monoclinic space-group symbol (for details see
Gelato & Parthé, 1984).

(¢) Orthorhombic structures where the space-
group symbols do not prescribe a particular labelling
of any of the three unit-cell axes have to be described
with a unit cell where a < b < c¢. These space groups
have cubic affine normalizers (Burzlaff & Zimmer-
mann, 1980). If the space-group symmetry prescribes
a label of one unit-cell axis (it is always the ¢ axis in
International Tables for Crystallography), the two
other being free, unit cells with a < b are used. These
orthorhombic space groups have tetragonal affine
normalizers. For all other orthorhombic structures
(those with orthorhombic affine normalizers which in
these cases are identical with the Euclidean nor-
malizers) the standard space-group setting fixes the
proper labelling of the three unit-cell axes.

All these conventions are listed in condensed form
in Table 6. For a standard structure description, all
valid descriptions have to be compared and a selec-
tion has to be made.

Choice of representative coordinate triplets

Having decided on the unit cell, we want to find a
standard for the choice of the representative coordin-
ate triplet of a Wyckoff position. This may be done
in the following way: As representative positional
coordinates for an atom those xyz values have to be
chosen which satisfy 0= x, y, z <1 and which corres-
pond to the first xyz triplet printed in International
Tables for Crystallography for its Wyckoff point set.
For point sets with unspecialized coordinates, differ-
ent symmetry-equivalent xyz triplets of the same point
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set may correspond to the first xyz triplet printed in
International Tables for Crystallography, Vol. A. In
this case a rule is needed to choose between the
various possible triplets.* We adopt that triplet for
which (x*+y*+2%"? is a minimum.} If the same
minimum square-root value is found with several xyz
triplets, the triplet for which x has the smallest value
and where necessary y also has the smallest value is
adopted as standard.

The standardization parameter I’

The sum of the minimal (x*+y*+2%)"/? values of

all standardized representative coordinates of the
atoms in the unit cell of a structure is taken as a
standardization parameter, I, to characterize the
structure with a given choice of translation, rotation
and inversion of the coordinate system.

For the standard description of a structure, that
description is chosen for which the standardization
parameter, [, is a minimum.$ As an example we can
see in Tables 1(a) and (b) that the description for
CeCu, found in the literature is the description with
the smallest standardization parameter. Only the
order of the atoms had to be changed according to
the further rules given below. If several possible
descriptions lead to the same value of the standardiz-
ation parameter, then that description is chosen where
the sum of the x coordinates of all atoms is the
smallest. If this procedure is equivocal, the sum of
the y coordinates is used as well and then the sum
of the z coordinates. If even this does not lead to a
result one compares the sum of the three coordinates
of the first atom in the different descriptions (after
the ordering of the atom list). The description with

* Our original idea to choose as representative coordinates those
corresponding to sites which are within the asymmetric unit, as
defined in International Tables for Crystallography (1983) had to
be abandoned. Data points within the given asymmetric unit do
not necessarily correspond to the first xyz triplet given for each
point set in International Tables for Crystallography (1983) but to
a symmetry-equivalent point. For example, for Pn3n, origin choice
2 with symmetry centre at origin, the asymmetric unit withj < x =3,
i=y=3i=z=3 y=x z=y does not contain point 000, the first
entry for Wyckoff letter 2(a), but instead the symmetry equivalent
111 An additional difficulty exists with a data point which is on
the surface of the asymmetric unit since it may appear more than
once. Special rules would be needed for each space group to make
the proper choice.

1 We choose this formula because in ‘fractional space’, i.e. not
considering the cell parameters, it corresponds to the distance from
the origin of an atom with coordinates xyz.

i For space groups with axial polarity we have the additional
difficulty that in at least one direction the origin cannot be fixed
by the symmetry elements. Continuing in the same manner as
above, we choose the origin for these groups to be based on the
coordinates themselves in such a way as to minimize I, which
requires summing over all atoms (not only the representative atoms)
in the unit cell. The mathematical formulation is discussed in the
STRUCTURE TIDY program description (Gelato & Parthé, 1984).
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the smallest sum is taken as standard. If this is
ambiguous one compares the sum of the x, y and z
values of the second atom and so on.

If, as in the case of CsCl, the different possible
descriptions lead to the same numerical values of the
atom positions, either description may be taken as
standard.

Ordering and renumbering of atoms

For the presentation of atomic coordinates in the final
list the following convention is adopted. The atoms
are listed in the order of their Wyckoff letters, as given
in International Tables for Crystallography (1983)
(from top to bottom), regardless of the atomic species
involved. This deviates from the usual convention of
ordering the atoms, but permits types and antitypes
as well as alloys with mixed site occupation to be
described in a uniform way and avoids any con-
troversy concerning the proper sequence of the ele-
ments in the chemical formula. However, in order to
be able to take in at a glance the different positions
occupied by one particular element in a structure, the
different element symbols in the final atom list are
displaced sideways by different amounts (see
examples). If different coordinate triplets with the
same Wyckoff letter appear, they are arranged accord-
ing to increasing x, then increasing y and finally
increasing z values.

The numbering of atoms of one kind which occupy
the same or different Wyckoff positions in a structure
is to follow the sequence of their representative xyz
triplets in the final structure data list.*

Once the atoms are properly numbered and the
order of all atoms in the final list has been established,
the numerical values for y (and z) have to be replaced
by their analytical expression provided they are listed
as such in International Tables for Crystallography
(1983). For examples see Tables 2 and 5.

Occupation factors are given in the final list as in
the unstandardized data since only the structure sites
are affected by a standardization.

The errors of the atom coordinates in the standard-
ized structure description are calculated from the
original data by the propagation of errors. Details
will be discussed by Gelato & Parthé (1984).

Procedure to be adopted to indicate the chirality and
polarity in the standardized structure data

A study of Bijvoet differences should, in appropriate
circtimstances, permit determination of the chirality

* Rotation of the coordinate system as well as a change of the
origin needed for standardization will lead to a Wyckoff position
having the same point symmetry but which may have a different
Wyckoff letter. This may have an effect on the sequence of the
representative atom coordinates and on the numbering of the atoms
of one kind.
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and polarity of all non-centrosymmetric structures.
To indicate these results in the standardized structure
data the following procedure is proposed:
Structures based on a space group which has an
enantiomorph are always standardized in the space
group with the smallest index for the relevant screw
axis (groups with prefix E of Table 6) if necessary,
by changing the signs of all coordinates to perform
the change to the enantiomorphic space group. If the
experimental data indicate that the correct space
group is the one with the higher index, minus signs
are placed in front of the standardized atom coordin-
ates and the real space group with higher index is
listed. As an example we consider low-quartz (Don-
nay & Le Page, 1978) for which the standardized
descriptions of the two enantiomorphs are as follows:

Laevoquartz
P3,21
60 in 6(c) 0-41 0-14 0-12
3Siin 3(a) 0-53 0 3
Dextroquartz
P3,21
60 in 6(c) -0-41 -0-14 -0-12
3Si in 3(a) -0-53 0 -1

The procedure is similar for all other non-centrosym-
metric structures. The structures are first standardized
in the normal way considering all rotations and inver-
sion of the coordinate system. If the chirality or the
polarity of the standardized structure data are differ-
ent from that found by experimental evidence, minus
signs are placed in front of the standardized atom
coordinates. For seven space groups, however, (Fdd?2,
14,, 14,22, 14, md, 14,cd, 142d and F4,32) also the
necessary translation component has to be given
(Table 6, column E, first entry on the second line for
the corresponding space group). This origin shift has
to be given separately for all atom coordinates. For
example, for F4,32: —x, +}, —y, +3, ~z, +3 where x,,
¥s and z, are the atom coordinates obtained by normal
standardization.

The adopted procedure allows an easy comparison
of the atom coordinates of identical structures which
differ only in chirality or polarity.

Examples for standardized isotypic structures

(a) CeCu, and KHg, are two isotypic structures,
for which the non-standardized data are given in the
upper part of Table 1(a). Inspection of the standard-
ized data, given in the lower part, makes the isotypy
of the two structures evident.

(b) The published and the standardized structure
data for Ca;,Sn,o and Pu; Rh,, can be found in Table
2. Both compounds have moderately complicated
alloy structures with 15 different atom sites. The
isotypy of these two compounds was not expected.
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Table 2. Published and standardized structure data of Ca;,Sn,, and Pu;Rhy,

Data for Ca;,Sny,
(Fornasini & Franceschi, 1977)

14/ mem, c/a=3-189

I'=66780
x y z
Ca(l) in 8(h) 0-3405 L+x 0
Ca(2) in 32(m) 0-2103 0-0519 0-0533
Ca(3) in 8(g) 0 1 00716
Ca(4) in 32(m) 0-0808 0-2161 0-1365
Ca(5) in 8(g) 0 i 0-1678
Ca(6) in 32(m) 0-2138 0-0861 0-2125
Ca(7) in 4(b) 0 ! [
Sn(1) in 4(c) 0 0 0
Sn(2) in 8(k) 0-0859 lix 0
Sn(3) in 16(}) 0-3019 lix 0-0748
Sn(4) in 8(f) 0 0 0-0949
Sn(5) in 16(1) 0-1617 L+x 0-1231
Sn(6) in 8(/) 0 0 0-1733
Sn(7) in 16(1) 0-3469 1+x 0-2087
Sn(8) in 4(a) 0 0 1
Standardized data for Ca;,Sn,,
I'=6-6780
x y z
Ca(l) in32(m) 0-0808 0-2161 0-1365
Ca(2) in 32(m) 0-2103 0-0519 0-0533
Ca(3) in 32(m) 0-2138 0-0861 0-2125
Sn(1)in 16(}) 0-1531 l+x 02913
Sn(2) in 16(/) 0-1617 1+x 0-1231
Sn(3)in 16(1) 0-1981 l+x 0-4252
Sn(4) in 8(h) 0-0859 1+x 0
Ca(4) in 8(h) 0-3405 Iix 0
Ca(5) in 8(g) 0 i 0-0716
Ca(6) in 8(g) 0 1 0-1678
Sn(5)in 8(f) 0 0 0-0949
Sn(6) in 8(f) 0 0 0-1733
Sn(7)in 4(c) 0 0 0
Ca(7) in 4(b) 0 i H
Sn(8) in 4(a) 0 0 i

175
Data for Pu;;Rh,,
(Cromer & Larson, 1977)
I4/mem, c¢/a=3-334
I'=6-7647

x y z

Pu(l) in 4(b) 0 3 i
Pu(2) in 8(g) 0 i 0-0756
Pu(3) in 8(g) 0 1 0-1656

Pu(4) in 8(h) 0-1586 x+1 0
Pu(5) in 32(m) 0-2947 0-4299 0-0500
Pu(6) in 32(m) 0-2855 0-5774 0-1346
Pu(7) in 32(m) 0-2819 0-4125 0-2114

Rh(1) in 4(c) 0 0 0

Rh(2) in 4(a) 0 0 s
Rh(3) in 8(f) 0 0 0-0940
Rh(4) in 8(f) 0 0 0-1734

Rh(5) in 8(h) 0-4035 x+4i 0
Rh(6) in 16(]) 01812 x+1 0-0726
Rh(7) in 16(]) 0-3417 x+1 0-1269
Rh(8) in 16(]) 0-1536 x+1 02109

Standardized data for Pus;Rh,,
I'=6-6688

x y z
Pu(l) in 32(m) 0-0774 0-2145 0-1346
Pu(2) in 32(m) 0-2053 0-0701 0-0500
Pu(3) in 32(m) 0-2181 0-0875 0-2114
Rh(1)in 16(]) 0-1536 1+x 0-2891
Rh(2)in 16(]) 0-1583 1+x 0-1269
Rh(3)in 16()) 0-1812 lix 0-4274

Rh(4)in 8(h) 0-0965 1+x 0

Pu(4) in 8(h) 0-3414 Lyx 0
Pu(5) in 8(g) 0 1 0-0756
Pu(6) in 8(g) 0 1 0-1656
Rh(5)in 8(f) 0 0 0-0940
Rh(6) in 8(f) 0 0 0-1734

Rh(7) in 4(c) 0 0 0

Pu(7) in 4(b) 0 L i

Rh(8)in 4(a) 0 0 1

In the case of Puy,Rh,, an origin shift of 00} leads to the smallest standardization parameter. No origin shift was necessary for Caz;Sn,,; however, the

atoms had to be relabelled and put into a different order.

Table 3. Standardized structure data of R-phase Mo-
Co-Cr (Komura, Sly & Shoemaker, 1960)

R3, a=10903, c=19-342 A

M=Cr+Co x y z
M(l) in 18(f) 0-10523 0-38767 0-06667
Mo(1) in 18(f) 0-11153 0-39957 0-28887
Moo.6My.3g in 18(f) 0-1265 0-1759 0-1031
Moo.,, My.ge in 18(f) 0-1393 0-0212 0-3038
M(@2) in18(f) 0-1969 0-2250 0-2315
M(@3) in 18(f) 0-24593 0-41967 0-16467
Mog.76 My.24 in 18(f) 0-2579 0-0330 0-1817
Mog.53 M4 in 18(f) 0-2687 0-1132 0-0348
M(@4) in 6(c) 0 0 0-1956
Mo(2)  in 6(c) 0 0 0-4265
Moy.;, My.go in 3(a) 0 0 0

To obtain this standardized description with the lowest value of the
standardization parameter (I"=3-6121) the coordinate system had to be
rotated (xyz - yxz) and the origin shifted by 00.

(¢) The R-phase Mo-Cr-Co, for which the stan-
dardized data are found in Table 3, represents an
example of a complicated alloy structure with sites

having mixed occupation. The standardization leads
here to a rotation of the coordinate system.

(d) The standardized data of Y;Co, and Mo,IrB,,
shown in Table 4, make it evident that the ternary
compound is a substitution derivative of the binary
structure type.

(e) The non-standardized literature descriptions of
the n-carbide, TizNi,O and Ti,Ni structures, presen-
ted in the upper part of Table 5, do not allow the
relation between these structures to be recognized.
However, the standardized descriptions given in the
lower part of Table 5 show immediately that W,Co,C,
W;Fe;C and Ti,Ni,O are isotypic and that Ti,Ni has
the same atom arrangement except for one structure
site which is not occupied.

Problems with the proposed standardization

There are two kinds of problems which can arise with
the proposed standardization. One concerns the
proper choice of basis vectors for those space groups
where the cell metric is used as a guide for the choice
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Table 4. Published and standardized data for Y,Co, and Mo,IrB,

Y,Co,
(Moreau, Parthé & Paccard, 1975)

Pnnm, a=12-248, b=9-389, c=3-975 A

X y z
Y(1) in 4(g) 0128 0-193 0
Y(2) in 4(g) 0-387 0-373 0
Y(3) in 4(g) 0-137 0-574 0
Co(1)in 4(g) 0-269 0-860 0
Co(2)in 4(g) 0-462 0-883 0
Standardized data
I'=2-2469
Pnnm, a=9-389, b=12-248, c=3-975 A

x y z
Co(l)in 4(g) 0117 0-038 0
Co(2)in 4(g) 0-14 0-231 0
Y(1)  in 4g) 0-193 0-628 0
Y(2) in4(g) 0-426 0-363 0
Y(3) in4(g) 0-627 0-113 0

Mo,IrB,
(Rogl, Benesovsky & Nowotny, 1972)

Pnnm, a =9-422, b=7-356, c=3-231 A

X y z
Ir  ind(g) 0-11 0-12 0
Mo(1)in 4(g) 0-37 0-32 0
Mo(2)in 4(g) 0-64 0-07 0
B(1) in 4(g) (0-04 0-61 0)*
B(2) in4(g) 025 0-61 0)*

Standardized data

Ir=2-2359

Pnnm, a =7-356, b=9-422, c=3-231 A

x y z
B(1)in 4(g) 11 0-04 0)*
B(2)in 4(g) (0-11 0-25 0)*
Mo(1) in 4(g) 0-18 0-63 0
Mo(2) in 4(g) 0-43 0-36 0
Irin 4(g) 0-62 0-11 0

For Y;Co, the a and b axes had to be interchanged and the origin shifted by 030, while in the case of Mo,IrB, after an interchange of a and b the

origin was shifted by 300.

* The B positions have been estimated using space considerations.

Table 5. Published and standardized structure data for W,Co,C, W;Fe,C, Ti,Ni,O and Ti,Ni

W,Co,C
[SR (1954) 18, 81T*

W;Fe,C
[SR (1967) 32A, 45)

Fd3m, origin away from

symmetry centre Fd3m, symmetry centre at origin

X y z X y z
16C  in 16(c) i [ 16Fe(1) in 16(d) ! [
16W(1) in 16(d) H 3 3 32Fe(2) in32(e) 0-7047 x x
48W(2) in 48(f) 0195 0 0 48w in48() 03228 ! 1
32Co in 32(e) 0825 x «x 16C in 16(c) 0 0o o

Standardized data Standardized data
r=1-6774 I'=1-6829

X y z X y z

W(l)in 48(f) 0430 } Win 48(f) 04272} }
Coin 32(e) 0200 x «x Fe(1) in 32(e) 02047 x x
Cin 16(d) i [ Cin 16(d) i [
W(2)in 16(c) 0 [ Fe(2) in 16(c) 0 0 0

Shift of origin from

Shift of origin from
published data 3§

published data i3}

* References to Structure Reports, giving date, volume number and page number.

of the unit cell. The second concerns the standardiz-
ation of nearly isotypic structures where one or several
positional parameters vary around a special value.

In Table 6 are listed 53 space groups where the
numerical values of the lattice parameters are used
to find a reduced cell and/or to label the axes for a
standard description. If by chance the cell parameters
are not significantly different, a special procedure is
necessary for the standardization. In this case one
applies the regular standardization procedure to each
of the equivalent structure descriptions and the final
selection is made according to the smallest value of
the standardization parameter.

TisNi,O
[SR (1963) 28, 140]

Ti,Ni
[SR (1963) 28, 21]

Fd3m, origin away from
symmetry centre

Fd3m, origin away from
symmetry centre

X y z X y z
16Ti(1) in 16(c) L Loy 16Ti(1)  in 16(c) i bt
48Ti(2) ind8(f) 0312 0 0 48Ti(2) in48() 0311 0 0
32Ni in 32(e) 0916 x «x 32Ni in 32(e) 0912 x «x
160 in 16(d) H L1

Standardized data Standardized data
I'=1-7069 Ir=0-839

X y z x y z

Ti(1) in 48() 0437 L % Ti(1) in 48(f) 0436
Niin 32(e) 0209 x «x Niin 32(e) 0-213 x x
Oin 16(d) 3 i

Ti(2) in 16(c) 0 0 0 Ti(2) in 16(c) 0 0 0

Shift of origin f'rlolr:] Shift of origin from

published data 1} published data 33

A second problem exists with closely related but
slightly different structures which each can be for-
mally standardized, but show no correspondence in
their standardized descriptions. This arises because
there is a discontinuity in the numerical x, y, z values
at the limit of the unit cell (or any other chosen
translation period) and any standardization pro-
cedure would be affected by this difficulty. A similar
case, a discontinuity close to a special value, was
found for Pu;Co, Zr;Co, PuBr; and TbCl;. The first
two compounds have similar standardized descrip-
tions as shown in the lower part of Table 7, while the
two nearly isotypic halogenides have standardized
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Table 6. Hermann—Mauguin symbols of space groups in standard setting, extra conditions for choice of unit
cell, extra condition for the labelling of the axes, list of non-redundant xyz triplets, permitted origins of unit cell,
symbols and basis vectors of corresponding Cheshire groups.

The prefix in column E indicates if the space group is chiral (C) with its special case of enantiomorphic (E) or achiral (A) with its
special case of centrosymmetric (without prefix). xyz triplets in the second line correspond to a changed chirality and polarity.

A B C D E F G H
Standard
space-
group Extra condition for Labels Non-redundant Cheshire Basis vectors of
No. symbol choice of unit cell of axes xyz triplets Permitted origins group Cheshire group
TRICLINIC Either type I cell, positive reduced form: a <90, B <90, y <90° or type II cell, negative reduced form: & =90, 8 = 90, y=90°
1 P Niggli reduced cell a<b<c C xyz xyz pAdl ea, eb, ec
Xyz
2 P1 Niggli reduced cell a<b<c xyz 000, 500, 030, 003, 04, 104, 10, 1} P1 ja,1bkc
MONOCLINIC b-axis unique; 8 =90, a =y=90°
3 P2 Reset Niggli reduced a<e C xyz 0y0, 04, 150, 1y} 2'2m ia,ebic
cell of type II Xyz
4 P2, Reset Niggli reduced a<c C xyz 0y0, 0y}, 1y0, iy} Z2/m ia,eb ic
cell of type II $374
5 C2 a and ¢ shortest translation C xyz 0y0, Oy} Z'2/m ja, ebic
vectors which agree with pi73
space group
6 Pm Reset Niggli reduced a<c A xyz x02z, x3z Z%2m ea, b, ec
cell of type II Xpz
7 Pc a and ¢ shortest translation A xyz x0z, x3z Z2m €a, ib, ec
veciors which agree with Xpz
space group
8 Cm a and ¢ shortest translation A xyz x0z Z%/m €a, b, ec
vectors which agree with Xyz
space group
9 Ce a and ¢ shortest translation A xyz x0z Z%2/m ea, b, ec
vectors which agree with xpz
space group*
10 P2/m  Reset Niggli reduced a<c xyz 000, 300, 040, 004, 044, L4, 110, 144 P2/m la,1bic
cell of type 11
11 P2,/m  Reset Niggli reduced a<ce xyz 000, 400, 030, 004, 03, 304, 110, 114 P2/m ia,1b, 5
cell of type II
12 C2/m  a and c shortest translation xyz 000, 004, 030, 04} P2/m ia,1b4c

vectors which agree with
space group
13 P2/c  aand c shortest translation xyz 000, 100, 030, 00}, 034, 104, 120, 441 P2/m ja,3bic
vectors which agree with
space group

14 P2,/c  aand ¢ shortest translation xyz 000, 300, 00, 004, 033, 303, 410, 134 P2/m 3a,1b, 3¢
vectors which agree with
space group

15 C2/c¢  aand c shortest translation Xxyz 000, 004, 040, 03} P2/m ja,ib, ¢

vectors which agree with
space groupt

ORTHORHOMBIC a =8 = y=90°

16 P222 a<b<c C xyz 000, 100, 040, 004, 044, 104, 4o, 411 Pmmm la, b, ic
Xyz

17 P222, a<b [00L]t C xyz 000, 00, 030, 004, 041, 303, 410, 1} Pmmm ia, ib, ic
Xyz

18 P2,2,2 a<b Cxyz 000, 100, 030, 00}, 0%, Job, 1L, L1t Pmmm La, b, bc

1“1 Xy: 2 7 22 24, 3

xyz

19 P2,2,2 a<b<c &l C xyz 000, 400, 030, 003, 044, 104, 330, 33} Pmmm {a, 3b, e
1212 xyz
: 374

20 Cc222 a<b [00}]% C xyz 000, 004, 040, 04} Pmmm la, ib, ic
! o==
xpz

21 c222 a<b C xyz 000, 004, 040, O%4 Pmmm ia, 3b, jc
Xyz

22 F222 a<b<c C xyz 000, 144, L4, 123 Immm ia, ib, ic
Xyz

23 1222 a<b<c C xyz 000, 004, 00, 04} Pmmm ia, ib, ic
%5z

24 12,22 a<b<ec 148 Cxyz 000, 00}, 010, 0} Prmm la,4b, 4c
1“141 44 ol
574

25 Pmm?2 a<b A xyz 00z, 0}z, 40z, 41z Z'mmm ia, ib, ec
%5z

26 Pme2 A xyz 00z, 04z, 10z, 4z Z'mmm ia, 1b, ec

1

%7E

27 Pcc2 a<b A xyz 00z, 04z, 302, 3}z Z'mmm i1a,1b, ec
%77

28 Pma2 A xyz 00z, 04z, 102, {4z Z'mmm ia, ib, ec
x5z

29 Pea2, A xyz 00z, 03z, 402, 44z Z'mmm ia,1b, ec
xyz

30 Pnc2 A xyz 00z, 04z, 30z, 41z Z'mmm 1a, b, ec

2

%5z

31 Pmn2, A xyz 00z, 04z, 10z, 31z Z'mmm la, 1b, ec
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32

33

34

35

36

37

38

39

40

41

4?2

43

4

45

46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
n
72
1
74
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B
Standard
space-
group
symbol

Pba2
Pna2,
Pnn2
Cmm2
Cme2,
Cec2
Amm2
Abm2
Amgz
Aba2
Fmm2
Fdd2
Imm2
Iba2
Ima2

Pmmm
Pnnn
Pcem
Pban

Pmma
Pnna
Pmna
Pcca
Pbam
Peccn
Pbem
Pnnm

Pmmn
Pben
Pbca
Pnma

Cmem
Cmca

Cmmm
Ceem

Cmma
Ceca

Fmmm
Fddd

Immm
Ibam

lbca
Imma

C D

Labels
of axes

Extra condition for
choice of unit cell

a<b

a<b

a<b

a<b

a<b
a<b [l
a<b

a<b

a<b<e

a<b<c
a<b
a<b

Origin at centre of symmetry

Origin at centre of symmetry

a<b
a<b

a<b

Origin at centre of symmetry a<b

a<b<c[D)**

a<b
a<b
a<b {{o]tt
a<b [Ho]tt
a<b<c

Origin at centre of symmetry

Origin at centre of symmetry
a<b<c
a<b

a<b<c [

a<b e

a<b<c 00Nt

Table 6 (cont.)
E

Non-redundant
xyz triplets

A xyz
Xyz
A xyz
2z
A xyz
Xyz
A xyz
xyz
A xyz
xyz
A xyz

Xxyz

xXyz
xyz
xyz
Xxyz
xyz
xyz
xyz
xyz
xyz
xXyz
xyz
xyz
Xyz
xyz
xyz
xyz
xyz
xyz
xyz
Xxyz

TETRAGONAL a=b, a =8=y=90° no extra conditions for the labelling of axes

75

76
77

78
79

80

81

P4

P4,
P4,

P4,
14
14,

P4

Enantiomorph of P4,

C xyz, Xy

xyz, xyz
E xyz, Xyz
C xyz, Xyz

XyZ, xyz

C xyz, Xyz

XyZ, xyz
C xyz, yx

- pEgh-xz
A xyz, jRZ

XyZ, yxz

Permitted origins

00z, 04z, 30z, 33z
00z, 04z, 10z, 14z
00z, 03z, 10z, 44z
002, 03z
00z, 05z
00z, 0z
00z, 10z
00z, 10z
00z, 0z
00z, 10z
00z
00z
00z, 0}z
002,04z
00z, 04z

000, 400, 030, 003, 044, 103, 110, 113
000, 500, 050, 003, 024, 304, 310, 11}
000, 100, 040, 004, 043, 10, 110, 14}
000, 300, 010, 003, 034, 304, 440, 13
000,100, 040, 00}, 034, 104, Ho, 11}
000, 00, 030, 004, 044, 04, 140, 1}
000, 100, 030, 00}, 034, 104, 1o, 11}
000, 100, 040, 003, 044, 401, 330, 143
000, 300, 030, 004, 034, 103, 10, 1}
000, 400, 030, 004, 034, j04, Ho, 1}
000, 100, 040, 003, 043, 303, 110, 14}
000, 100, 040, 004, 034, 303, 110, 4}
000, 100, 040, 003, 043, 104, 10, 31
000, 100, 040, 004, 034, 101, Ho, 14}
000, 100, 030, 004, 041, 303, 110, 114
000, 400, 040, 004, 041, }04, 110, 41}

000, 004, 040, 034

000, 004, 040, 04}

000, 003, 030, 033

000, 003, 010, 034

000, 004, 040, 04

000, 00}, 010, 01}

000, 114
000, 344

000, 00}, 040, 04}

000, 004, 030, 01

000, 004, 030, 034

000, 004, 040, 033

00z, 2

00z, 3z

00z #z
00z

00z

000, 004, 340, 44

G

Cheshire
group

Z'mmm
Z'mmm
Z' mmm
Z'mmm
Z'mmm
Z'mmm
Z'mmm
Z'mmm
Z'mmm
Z' mmm
Z'mmm
Z'ban

Z'mmm
Z'mmm
Z'mmm

Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pmmm
Pnnn
Pmmm
Pmmm
Pmmm
Pmmm

Z'a/ mmm
z'a22
Z'4/ mmm
Z'4/ mmm
Z'4/nbm

P4/ mmm

H

Basis vectors of
Cheshire group

1a, }b, ec
3a, 1b, ec
ia, b, ec
la, ib, ec
ia,1b, ec
{a,1b, ec

a, b, ec

i

a,1b, ec
1a,1b, ec
la,1b, ec
3a,1b, ec
ia, b, ec
ia,1b, ec
1a,1b, ec
ia,1b, ec

ia,1b,ic
ia,1b,ic
ia,b1c
ia,1b,ic
ia,1bic
la,1b,4c
fa,1b1c
ia,1b.ic
ia,1b, ic
ia,1b1c
1, 3b 4c
1a,1b,ic
la,ib e
3a,4b,ic
la,4b,ic
ia,ibic
ia,1b,ic
ia,1b, 3¢
ia,1b,ic
ia,ib.ic
ia,1b }c
la,ib 4c
ia,1b1c
ia,ibic
3a,1b, 3¢
ia,4b,4c
laib,ic
1a,1bdc

Ya-b),{(a+b), ec
{(a—b),Ya+b), ec
Ya-b),Ya+b), ec
Ka-b),ia+b), ec

Ya-b),Ka+b), ec

Ya-b)ia+b)ic



82
83
84
85
86
87
88
89
90
9t
92
93
94
95
96
97
98
99
100
101
102

103

107

108

109

110

1t

12

113

114

11s

116

17

118

119

120

121

122

B
Standard
space-
group
symbol

13
P4/m
P4,/m
P4/n
P4,/n
14/m
14,/a
P422
P42,2
P4,22
P4;2,2
P4,22
P4,2.2
P4,22
P4,2,2
1422
14,22
P4mm
P4bm
P4,cm
Pd,nm
Pdcc
P4nc
P4,mc
P4,bc
I14mm
Idcm
14, md
14,cd
Pa2m
Pazc
P32| m
Pa2c
Padm2
Pac2
Pab2
Pan2
13m2
I4c2
132m

142d

C

Extra condition for
choice of unit cell

Origin at centre of symmetry
Origin at centre of symmetry

Origin at centre of symmetry

Enantiomorph of P4,22
Enantiomorph of P4,2,2
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D

Labels
of axes

Table 6 (cont.)

E

Non-redundant
xyz triplets
A xyz, yXz
Xyz, yxz
Xxyz, Xyz
xyz, Xyz
xyz, yxz
Xyz, yxz
Xxyz, XpZ
Xyz, Xyz
C xyz
Xyz
C xyz
iz
E xyz
E xyz
C xyz
5z
C xyz
5z

C xyz
xyz
C xyz
H-yi-z
A xyz
b373
A xyz
b4
A xyz
x5z
A xyz
iz
A xyz
iz
A xyz
5z
A xyz
xyz
A xyz
5z
A xyz
&=
A xyz
57
A xyz
-z
A xyz
-yz
A xyz
iz
A xyz
Xy
A xyz
b7
A xyz
iz
A xyz
5z
A xyz
iz
A xyz
5z
A xyz
Xyz
A xyz

Permitted origins

000, 005, 0;—1, 055
000, 00, H0, 434
000, 004, 110, 11
000, 004, 4o, 43
000, 004, 440, 433
000, 003
000, 00}
000, 003, 440, 344
000, 003, 440, 33
000, 003, 40, 334
000, 004, 330, 33
000, 004, 140, 343

000, 003, 330, 344

00z, 4Lz
00z, 4z
00, }{z
00z, 33z
00z
00z
00z
00z
000, 00}, 130, 33
000, 004, 130, 53}

000, 003, 430, 4

000, 003, 330, 33
000,00, 330, 344
000, 003, 340, 33
000, 004, £30, 33
000, 00}, 044, 043
000, 003, 033, 033
000, 004

000, 00}

G

Cheshire
group

14/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4,/ nnm
P4/ mmm
P4/ mmm
P4,22
Pa,22
P4/ mmm

P4/ mmm

P4/ mmm
P4,/ nnm
Z'4/ mmm
Z'4a/mmm
Z'4a/ mmm
Z'4/ mmm
Z'4/ mmm
Z'4/ mmm
Z'4/ mmm
Z'4/ mmm

Z'4/mmm
Z'4/ mmm
Z'4/ nbm
Z'4/nbm
P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4a/mmm
P4/ mmm
14/ mmm
14/ mmm
P4/ mmm

P4,/nnm
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H

Basis vectors of
Cheshire group

Ya-b),}a+b), ke
Ha-b),a+b), le
Ka-b), {a+b), jc
Ha—~b), fa+b), }e
Ha-b), fa+b), ke
Ha-b),Ha+b),}c
Ka-b), (a+b), je
Ha-b),}a+b),jc
Ya-b),Ya+b),ic
Y(a-b), Ya+b),ic
Ha-b),j(a+b),ie

ia-b),j(a+b),ic

Ha—b),Ya+b),jc

Ya-b).}(a+b).}e
Ha—b), Ya+b), 3¢
Ya—b),}(a +b), ec
a-b),Ya+b), ec
a—-b),}a+b), ec
Ha—b),}a+b), ec
$(a—-b),ia+b), ec
Ya~b),Ya+b), ec
Ya-b),}(a+b), ec
$a—-b),Ya+b), ec
Ha—b),Ya+b), ec
Ya-b),Ya+b), ec
a—b),}a+b), ec
a-b), Ya+b), ec
Ha-b),}a+b),4e
Ha—b), Ha +b), 3¢
Ha—b), }a+b),5¢
Ha—b),Ya+b),ic
Ha-b)ia+b),ic
Ha—-b),a+b),}c
Ha~b),Ya+b),4c
Ha—-b),Ha+b),5¢
i(a—b),}(a+b),ic
Ya-b),Ha+b),4c
Ha—-b),Ya+b),{c

Ha-b)Ya+b),}c
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No.

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

THE STANDARDIZATION OF INORGANIC CRYSTAL-STRUCTURE DATA

B
Standard
space-
group
symbol

P4/ mmm
P4/ mcc
P4/ nbm
P4/nnc
P4/ mbm
P4/ mnc
P4/nmm

P4/ncc

P4,/ mmc

P4,/mem
P4,/ nbe

P4,/nnm
P4,/ mbc

P4,/ mnm
P4,/nmc
P4,/ncm
14/ mmm
14/ mem
14,/amd
14,/ acd

C

Extra condition for
choice of unit cell

Origin at centre of symmetry
Origin at centre of symmetry

Origin at centre of symmetry
Origin at centre of symmetry

Origin at centre of symmetry
Origin at centre of symmetry

Origin at centre of symmetry
Origin at centre of symmetry

Origin at centre of symmetry
Origin at centre of symmetry

Table 6 (cont.)

E

Non-redundant

xyz triplets

xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz
xyz

TRIGONAL a = b, a = 8 =90, y = 120°, no extra conditions for the labelling of axes

143

144
145
146

147
148
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167

P3

P3,
P3,
R3

P3
R3
P312

P321
P3,12
P3,21
P3,12
P3,21
R32
P3ml
P31m
P3cl
P3lc
R3m
R3c
P31m
P3lc
Piml
P3cl
R3m
R3c

Enantiomorph of P3,
Hexagonal axes

Hexagonal axes

Enantiomorph of P3,12
Enantiomorph of P3,21
Hexagonal axes

Hexagonal axes

Hexagonal axes

Hexagonal axes
Hexagonal axes

C xyz, Xyz, yxz, j5z
Xyz, xyz, yXz, yxz
E xyz, Ryz, yxz, yXi

Xyz, Xyz, yXZ, yXZ
Xxyz, yxZ
C xyz, Xyz
Xyz, xyZ
C xyz, Xyz
Xyz, xyz
E xyz, Xyz
E xyz, Xyz

Xyz, xyz
A xyz, Xyz
XyZ, xyZ
A xyz, Xyz
72, xyz
A xyz
iz
A xyz
Xyz
Xyz, Xyz
xyz, Xyz
xyz, Xyz
xyz, Xyz
xyz
xyz

HEXAGONAL a = b, a = 8 =90, y=120° no extra conditions for the labelling of axes

168

169
170
171
172
173

174

175
176

Pé

P6,
Pé,
Ps,
Pé,

P6/m
P6,/m

Enantiomorph of P6,

Enantiomorph of P6,

C xyz, yxz
Xyz, yXz
E xyz, yxz

E xyz, yxz

C xyz, yxi
Xyz, ykz
A xyz, yXI
Xyz, yxz
Xyz, yxZ
xyz, yxz

Permitted origins

000, 004, 110, 1}
000, 004, 130, 14}
000, 004, 110, 444
000, 004, 110, 11}
000, 004, 310, 14}
000, 004, 410, 34
000, 004, 110, 11
000, 00, 0, 11}
000,004, 410, 41}
000,003, 140, }4}
000, 004, 40, 311
000, 004, 140, 333
000,004, 110, 141
000, 004, 130, 4}
000, 00}, 310, 444
000, 004, 140, 444
000, 00§
000, 004
000, 004
000, 00}

000, 004, 420, 434, #o. &
000, 00}

000, 004, 170, 13t 0. i}

000, 00}

00z
00z

00z

000, 004, {30, §#. #o, i1

000, 004
000, 00}

G

Cheshire
group

P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4/mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
Pa/mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4/ mmm
P4,/nnm
P4,/nnm

Z'6/mmm
Z'622
Z'31m

P6/mmm
R3m
P6/ mmm
P6/mmm

P6,22
P6,22

R3m
Z'6/ mmm
Z'6/ mmm

Z'/6mmm

P6/mmm
P6/ mmm
P6/ mmm
P6/mmm
R3m
R3m
Z'6/mmm
z'622
Z'622
Z'6/ mmm

P6/ mmm

P6/mmm
P6/ mmm

H

Basis vectors of
Cheshire group

Ka-b),{a+b) ic
Ya-b),Y(a+b), 3¢
{(a-b),Ya+b),ic
Ya-b), Ha+b),ic
ia-b).Y(a+b), 3¢
Ha-b),a+b),ic
{a-b), {(a+b),ic
Ha-b),{a+b),ic
Ha=-b),}a+b),ic
Ya-b),Ya+b),ic
Ha—b),Ya+b),ic
{(a-b),i(a+b),ic
Ya-b),ia+b),ic
Ya-b),Y(a+b),}c
Ya-b),Ya+b),ic
Ya-b),}a+b),}c
Ya-b),Y(a+b),ic
Ya-b),Ya+b), e
Ya~-b),{(a+b),ic
Ya=-b),Ya+b),}c

Ya-b), Ya+2b), ec
Ya-b), Ya+2b), ec
{a-b),Ya+2b), ec
a,b,ic
-ba+bic
Ya-b), (a+2b), i
a,bjc
Ya-b), a+2b),ic
a,bjc
—ba+bic
'3(a -b), '3(a +2b), ec
a,b,ec
{a-b),}{a+2b), ec
a, b, ec
{a—b),}(a+2b), ec
Ha-b),{a+2b), ec
a,b e
a,bic
a,b,c
a b, jc
—-ba+bic
-b,a+b,ic
a, b, ec
a, b, ec
a, b, ec
ab, ec
Ya—-b),Ka+2b),%¢

a,bic
a,b e



177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

193
194

B
Standard
space-
group
symbol

P622
P6,22
P6,22
P6,22
P6,22
P6,22
P6mm

P6cc
P6ycm
P6ymc
Pém2
P6c2
Pé2m

P82c

P6/mmm
P6/mec

P6;/mem
P6,/ mmc

C

Extra condition for
choice of unit cell

Enantiomorph of P6,22

Enantiomorph of P6,22

E. PARTHE AND L. M. GELATO

Table 6 (cont.)

D E

Labels Non-redundant
of axes xyz triplets

C xyz

Xyz
E xyz

E xyz

C xyz
Xyz
A xyz
5z
A xyz
b7
A xyz
xyz
A xyz
xyz
A xyz
374
A xyz
5z
A xyz
Xyz
A xyz
xyz
xyz
xyz
Xxyz
xyz

CUBIC a=b=g¢ a==7y=90°no extra conditions for the labelling of axes

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219

P23
F23
123

P2,3

P432
P4,32
F432
F4,32
1432
P4,32
P4,32
14,32
Pa3m
Fa3m
133m
Pa3n

Fa3c

Origin at centre of symmetry

Origin at centre of symmetry

Enantiomorph of P4,32

C xyz, yxz
Xz, yXz
C xyz, yxz

Cxyzi-yi-xi-z
L ity ixitz
Cxyzi-yi=xi-z
Ly rylexiz
xyz, yxz
xyz, X
Xyz, yxZ
xyz, jXZ
xyz, yxz
xyz
xyni-yl-xi-z
C xyz
*yz
C xyz
xyz
C xyz
574
C xyz
i-xi-yl-z
C xyz

Xyz

E xyz

Permitted origins
000, 00}
000, 00}
000, 003
000, 00}
00z
00z
00z
00z
000, 004, 330, i3z, 150, 353
000, 00}
000, 004
000, 00§
000, 00}

000, 004
000, 004

000, 344
000, 44, 144, 3
000
000, 4
000
000, 33
000, 144
000, 14}
000, 43

000
000, 44

000
000, 34}
000, 34
000, 34}
000, 11

000
000, 3}

000
000, 144

000, 113, 444, 43

000

000, 43}

000, 344, 344, 3

G

Cheshire
group

P6/ mmm
P6,22
P6,22

P6/mmm

Z'6/mmm
2'6/ mmm
Z'6/mmm
Z'6/mmm

P6/mmm

P6/mmm

P6/ mmm

P6/ mmm

P6/mmm

P6/mmm

P6/mmm
P6/ mmm

Im3m
Im3m
Im3m

Ia3d

Ia3d
Im3m
Im3m
Pm3m

Pn3m
Im3m

Im3m
Im3m

Im3m
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H
Basis vectors of
Cheshire group
a, b ic
a b lc
ablc
ablc
a, b, ec
abec
a, b, ec
a, b, ec
Ka-b),Ya+2b),%c
Ya-b), Ka+2b), %
abic
a,b,lc
abic
ablc

a,bic
a, b lc

ab,c
ia,1b,ic
abc
a b, c
ab,c
abc
ab,c
laib,c
la, b }c
a, b, c
abc
abc
abc
ab,c
ia,1b,}c
fa,1b,}c
ab,c
ab,c
ab,c
ab,c
la b ic
ab,c

ab,c

ia,1b, }c
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Table 6 (cont.)
A B C D E F G H
Standard
space-
group Extra condition tor Labels Non-redundant Cheshire Basis vectors of
No. symbol choice of unit cell of axes xyz triplets Permitted origins group Cheshire group
220 133d Axyz 000 Ia3d abc
sz

221 Pm3m xyz 000, 334 Im3m a,b,c
222 Pn3n  Origin at centre of symmetry xyz 000, 314 Im3m abec
223 Pm3n xyz 000, 111 Im3m abc
224 Pn3m  Origin at centre of symmetry xyz 000, 3} Im3m abec
225 Fm3m xyz 000, 144 Pm3m la,3b,4c
226 Fm3c xyz 000, 434 Pm3m ia,ibic
227 Fd3m  Origin at centre of symmetry xyz 000, 44 Pn3m Lla ib,ic
228 Fd3c  Origin at centre of symmetry xyz 000, 434 Pn3m ja,3b 3¢
229 Im3m xyz 000 Im3m a b c
230 la3d xyz 000 la3d abc

*To change ¢ ¢’ =(a+c) it is necessary to shift the origin by 0%0.
t To change ¢ ¢’ =(a+c¢) it is necessary to shift the origin by 130.

} The a and b axes may be interchanged if the origin is shifted by 004; the atomic coordinates then change from xyz to y x - z.
§ A cyclic permutation of the axes is possible. For the permutations baé, aéb and éba, an origin shift of {1} is necessary. The atomic coordinates then change from xyz to

y=ix-ii-z x-Li-zy-Land }-zy-1x-}, respectively.

9 The a and b axes may be interchanged if the origin is shifted by }ii: the atomic coordinates then change from xyz to y~ix-1%-z

** Only cyclic permutations of the axes are possible. If a< b < ¢ cannot be obtained, then a < b is taken.

+1 The a and b axes may be interchanged if the origin is shifted by }}0. The atomic coordinates then change from xyz to y~L x—} z

$# Cyclic permutations of the axes are possible. For the permutations baé, acb and ¢ba origin shifts of 310, 10} and 0}}, respectively, are necessary. The atomic coordinates then

change from xyzto y~ix-32 x-,zy-}and zy-} x—1, respectively.

Table 7. Published and standardized structure data of Table 8. Published, standardized and shifted structure

Pu;Co and Zr;Co

Pu;Co
[SR (1963) 28, 17]

Zr;Co
[SR (1970) 35A, 53]

Cmcm, a =3-475, b=10-976, Cmem, a=3-27, b=10-84,

c=9-220A c=895A
x y z x y z
4Pu(l)ind(c) O 0-0778 i 4Co ind4(c) 0 074 i
8Pu(2) in 8(f) 0 03678 0-0553 4Zr(1) in 4(c) 0 0424 }
4Co ind(c) 0 0778 H 8Zr(2)in8() 0 0135  0-057
Standardized data Standardized data
r=1-398 I'=1-4198
Cmcm, same unit cell Cmcm, same unit cell
X y z X y
Pu(1)in 8(/) 0 0-1322 0-0553 Zr(1) in 8(f) 0 0-135 0-057
Pu(2)in 4(c) 0 04222 ) Zr(2) in 4(c) 0 0424 i
Co ind(c) 0 0722 i Co in 4(c) 0 074 i

Shift of origin of 0}} from

No change of origin
published data

descriptions, given in the middle part of Table 8,
which differ from those given in Table 7.*
However, a shift of 053 from the standard (lower
part of Table 8) allows the isotypy of all four com-
pounds to be recognized. In this case the descriptions
of structures in Table 8 have slightly higher standar-
dization parameters. The two halogenides certainly
have a different bonding type from the two alloy
structures and probably form a different structure-
type branch; however, a discussion of structure-type
branches is not the object of this paper. As a general
procedure for a comparison of different related struc-

*In these particular structures a small variation of the y para-
meter of the last atom in the standardized data list can lead to a
jump to another permitted origin (y <0-75 or y =0-75).

data for PuBr; and TbCl,

PuBr; TbCl,
[SR (1948) 11, 282] [SR (1964) 29,274]
Cmem, a=12-65, b=4-10, Cmcem, a=3-86, b=11-71,
c=9-15A c=8-48
x y z X y z
4Pu  in4(c) 025 0 1 4Tb ind(c) 0 0-244 !
4Br(l)ind(c) -0-07 0 i 4Cl(1)ind(c) 0 0-583 1
8Br(2) in 8(f) 036 0 -005 8Ci(2) in 8(f) 0 0145 0-569
Standardized data Standardized data
r=1-4136 I'=1-4099
Cemm, a=4-10,b=12-65, Cmcm, same unit cell
c=915A
x y z X y z
Br()in8(f) 0 036 005 CIin8(f) 0 0355 0-069
Br(2) in 4(c) 0 007 h Cl(2)in 4(c) 0 0083 1
Pu  ind(c) 0 075 i To  in4(c) 0 0744 !
Interchange of a and b axes to obtain Shift of origin by 0}0
standard space group setting from published data
Shift of 044 from standard Shift of 03¢ from standard
I'=1-4366 I'=1-443
x y z X y z
B1)in8(f) 0 014 005 Ci()in8() 0 0145 0-069
Br(2) in 4(c) 0 043 1 CI(2)in 4(c) 0 0417 )
Pu  ind(c) 0 075 Iy o in4(c) 0 0756 i

tures consideration is recommended not only for the
description with the lowest standardization parameter
but also for those with higher values.

Practical considerations

In view of the many possibilities of describing a
crystal structure the normalization of crystal-structure
data is not a simple procedure. For this reason a
cgmputer program STRUCTURE TIDY (Gelato &
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Parthé, 1984) has been written which will standardize
data:.

Benefits and disadvantages

The proposed standardization allows each structure
to be described in a unique way. Thus the structure
data of the same structure determined in different
laboratories will be strictly comparable. In the case
of nearly isotypic structures the standardized data
allow the isotypy to be recognized by simple inspec-
tion of the lists of atom coordinates provided that
the numerical values of atomic coordinates of corres-
ponding atoms are close.* The variations in atomic
coordinates which still permit isotypy to be
recognized depend on the structure in question.

There may be crystal chemical reasons which sug-
gest that a non-standardized structure description is
more appropriate. For example, in the case of low-
symmetry deformation variants of basis structures
with higher symmetry the standardized description
may mask the structural relationship between these
structures (for example rhombohedral variants of
cubic structures which have to be described in the
standardized way with a triple hexagonal cell). The
crystallographer prefers here a description with unit-
cell dimensions and atom coordinates which relate
directly to the basis type. It is our belief that the
standardized description should never replace any
other description chosen to demonstrate a particular
relationship to other structures, but should be given
as an additional description. This presents a disad-
vantage as both descriptions would have to be printed.
However, the benefits of a standardized structure
description are sufficiently great that its publication
should always be included. Last but not least, many
inorganic structures are presented without any direct
relationship to other known structures and the stan-
dard description thus provides an unequivocal way
of describing the structure.
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their comments: H. F. Braun (Geneva), L. D. Calvert
(Ottawa), J. D. H. Donnay (Montreal), M. Fornasini
(Genoa), H. D. Flack (Geneva), Th. Hahn (Aachen),
F. Liebau (Kiel), A. D. Mighell (Washington), P. Rogl
(Vienna), S. Rundqvist (Uppsala), C. B. Shoemaker
(Oregon) and P. M. de Wolff (Delft), Special thanks
are due to Y. Billiet (Brest) and W. Fischer (Marburg)
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the manuscript and the difficult tables.

* Four recent examples which were found by us using standard-
ized descriptions: U,Fe,Si, (Akselrud, Yarmolyuk, Rozhdestven-
skaya & Gladyshevskii, 1981) is isotypic with La;Co,Sn;
(Dérrscheidt & Schifer, 1980); BaCuSn, (May & Schifer, 1974) is
isotypic with CeNiSi, (Bodak & Gladyshevskii, 1970); Gd;Cu,Ge,
(Rieger, 1970) is isotypic with Li4Sr;Sb, (Liebrich, Schifer & Weiss,
1970); Y;NiSi; (Klepp & Parthé, 1982) has the same ‘atom sites
with similar coordinates to Ba;Al,Ge, (Widera, Eisenmann,
Schifer & Turban, 1976).
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