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Abstract 

This paper describes a proposal for a standardized 
presentation of inorganic crystal-structure data with 
the aim to recognize identical or nearly identical 
structures from the similarity of the numerical values 
of the atom coordinates. 

Introduction 

For the classification of crystal structures and for 
various crystal-chemical considerations of inorganic 
and alloy structures it is important to recognize differ- 
ent compounds which have identical or nearly iden- 
tical atom arrangements.t Owing to the lack of stan- 
dards for the description of crystal structures, the lists 
of positional coordinates of two identical structures 
may not show any correspondence whatsoever. There 
are numerous examples in the literature where 
isotypic~, crystal structures were described as different 
structure types. This happened even in Struktur- 
berichte (1937) where, for example, the types B16 
(GeS) and B29 (SnS) correspond to the same structure 
type and where the types D01~ (Fe3C) and D02o 
(NiAI3) are nearly identical. 

As a simple demonstration, in the upper part of 
Table l(a) the structural data for CeCu2 and KHg2 
according to Pearson (1967) are given. From a com- 
parison of the numerical data the isotypy of the 
two structures cannot be recognized immediately 
although both are described with the same Hermann- 
Mauguin space-group symbol. Not only are the axes 
interchanged and the positional coordinates quite 
different, but also the Wyckoff letters of the positions 
differ. The isotypy was probably recognized only after 
drawings of the two structures had been compared. 

* The authors have been encouraged by the IUCr Commission 
on Crystallographic Data to publish this report. Readers who have 
comments or new ideas on crystal-structure data standardization 
are asked to contact the authors or the Chairman of the Commission 
on Crystallographic Data, Professor I. D. Brown, Institute for 
Materials Research, McMaster University, Hamilton, Ontario, 
Canada L8S M 1. 

t This is not a problem for organic structures as there are rarely 
compounds with identical or nearly identical atom arrangements. 

~t In the Angloamerican literature often called isomorphic. 
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In this paper a set of rules is proposed for the 
standardization of crystal-structure data, the aim of 
which is to simplify the task of recognizing identical 
or nearly identical structures.§ 

Previous proposals to standardize crystal-structure data 

To our knowledge there exists only one paper on the 
standardization of the description of crystal struc- 
tures. Schwarzenbach (1963) proposed a set of rules 
which were applied to the monoclinic and orthorhom- 
bic structure types listed in Smithells (1955). A more 
extensive paper in Z. Kristallog~. was announced but 
never published. 

Other proposals refer only to one aspect of the 
standardization problem, namely the cell reduction 
for triclinic and monoclinic crystals and the labelling 
of the axes. A unique description of a lattice is the 
reduced set of basis vectors defined by Niggli (1928) 
and re-introduced by Buerger (1960). The definition 
of this reduced cell can also be found in Mighell 
(1976) and in International Tables for Crystallography 
(1983), Vol. A, § 9.3; this reference gives for each of 
the 44 types of reduced cell the reduced form and 
the transformation matrices relating the reduced cell 
to a corresponding conventional cell; see also Mighell 
& Rodgers (1980). 

The Hermann-Mauguin space group in a standard 
setting as given in International Tables for X-ray Crys- 
tallography (1983), Vol. A (see later) permits in certain 
cases the labelling of one or more axes without 
ambiguity. However, for the labelling of the axes in 
the absence of requirements imposed by the standard 
space group, two different conventions can be found 
in the literature: 

(1) a < b < c (abc rule) was proposed by Buerger 
(1942) and Balashov (1956); 

§ No ettorts will be made here to define the limits of isotypy; 
however, the results of a standardization of crystal-structure data 
could serve as basis for further discussions on isotypy. Some 
structures may not really be isotypic but only isopuntal, which 
means they have the same space group and the same occupation 
of Wyckoff positions with the same adjustable parameters, but 
different unit-cell ratios and different atom coordinations. 

O 1984 International Union of Crystallography 
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(2) c < a < b (cab rule) was proposed by Donnay, 
Tunell & Barth (1934) and Donnay (1943). It was 
intended to smoothen the transition from the older 
morphological to the newer structural description of 
minerals. 

However, no generally accepted rules exist for the 
labelling of axes. 

There exist two extensive compilations of lattice 
parameters. In Crystal Data Determinative Tables 
(1973-1981), the cab rule has been applied to all 
triclinic, monoclinic and orthorhombic unit cells, 
whereas in the National Bureau of Standards Single 
Crystal Identification Data Base (1981) the abc rule 
is adopted for the description of Niggli reduced cells. 
In both compilations many structures are thus 
described with a non-standard space-group setting. 

Some general considerations 

It is evident that in the absence of any (arbitrary) 
rules there exist an infinite number of possible struc- 
ture descriptions. The rules can be based either on 
the geometry of the structure or on the symmetry of 
the atom arrangement. 

In the view of a crystal chemist the most appropri- 
ate description would be one which allows 
geometrical relationships to other structures to be 
seen. Unfortunately, this cannot serve as a basis for 
a standard description since, depending on the struc- 
tures to be compared, different descriptions might be 
needed.* Furthermore, the recognition of relation- 
ships between structures is exposed to subjective 
interpretation. 

Geometrical relationships between structures with 
different symmetry might be discovered by comparing 
the atomic positions in the Niggli reduced cells of 
the structures. This method has the disadvantage of 
imposing a structure description which deviates com- 
pletely from our conventional way of describing crys- 
tal structures and therefore does not seem appropriate 
for application on a large scale. 

The symmetry of the atom arrangement, together 
with the conventions of the International Tables of  
Crystallography (1983) of putting the symmetry axes 
along a, b, c and the way the Wyckoff positions are 
written down, can serve as a basis for a standard. 
However, as demonstrated above with CeCu2 and 
KHg2, even here different equivalent structure 
descriptions are possible, depending on the choice of 
the basis vectors (origin, length and direction). Thus, 
in addition to the logical choice of describing a struc- 

* As an example we can consider the cubic face-centred Cu 
structure. For comparison with other close-packed structures like 
Mg, Nd or Sm one would choose the triple hexagonal cell, for a 
comparison with Cu3Au or CuAu the conventional cubic cell. Thus 
there would not even be an agreement on what kind of unit cell 
one should use for the standard. 

ture with the standard Hermann-Mauguin  space 
group it will be necessary in certain cases to have 
extra rules. 

Different ways to describe a crystal structure in a 
standard Hermann-Mauguin space group 

In order to find out which extra rules are needed for 
standardization, it is necessary to study the different 
possibilities of describing a structure with different 
numerical values for the positional coordinates after 
having decided on the space group, the basis vectors 
of the unit cell and the choice of the representative 
triplet from a given Wyckoff position (to be discussed 
later). 

Different structure descriptions can be obtained by 
(1) shift of origin of the coordinate system (unit 

cell); 
(2) rotation of the coordinate system (unit cell); 

• (3) inversion of the basis-vector triplet (or reflec- 
tion of one basis vector). 

The last operation needs a special comment. Since 
we use by convention a right-handed coordinate sys- 
tem, the inversion of the basis vectors is in principle 
not permitted. However, it corresponds to a rep- 
resentation of the inverted original structure in a 
right-hand coordinate system. 

The different possible descriptions of a crystal 
structure in a standard space-group setting can be 
derived from the corresponding Cheshire group 
(Hirshfeld, 1968) [also called Euclidean normalizer 
(Fischer & Koch, 1983)]. The elements of the Cheshire 
group describe the symmetry of the arrangement of 
symmetry elements in a given space group. A group 
theoretical definition of a Euclidean normalizer can 
be found in appropriate text books, such as, for 
example, Schenkman (1975), and has been discussed 
by Gubler (1982). As the details of the application of 
Euclidean normalizers have been treated by Fischer 
& Koch (1983), we give here only the results and 
simple checks on the number of possible descriptions. 

In columns E and F of Table 6 are summarized 
the different possibilities of describing a crystal struc- 
ture assuming a choice of space group and unit cell 
as given in columns B, C and D. The possible shifts 
of origin of the coordinate system (Giacovazzo, 1980) 
are listed in column F. In column E are given non- 
redundant  xyz triplets. An xyz triplet obtained from 
another triplet by a permitted rotation or inversion 
of the coordinate system is called non-redundant  if 
it cannot be obtained either by the symmetry oper- 
ations of the space group or by a permitted origin 
shift. 

The prefixes in column E give information on the 
chirality of the corresponding space group. The dispo- 
sition of atom sites in a chiral space group (prefixes 
C or E in column E) cannot be brought into con- 
gruence with its mirror image by translation and /o r  



E. PARTHI~ AND L. M. GELATO 171 

rotation of the coordinate: system. The only symmetry 
elements present are proper rotation axes (with or 
without translation components). The xyz triplets on 
the same line are related by rotations of the coordinate 
system without change of chirality. An enantiomor- 
phic structure setting corresponding to a mirror image 
can be obtained by changing the signs of the x, y and 
z coordinates of all atoms (second line for each entry 
in column E). For three space groups, however, 
(141, I4122, F4~32) a shift of origin is also necessary. 
In space groups with prefix ¢ the enantiomorphic 
structure setting is possible with the same space 
group; however, in those with prefix E the enan- 
t iomorph structure setting is possible only with the 
other space group of the enantiomorphic space-group 
pair. 

The disposition of atom sites in an achiral space 
group (prefix A or no prefix in column E) can be 
brought into congruence with its mirror image by 
translation and /o r  rotation of the coordinate system. 
Achiral space groups have at least one improper 
rotation axis. All chiral and all aehiral, non- 
centrosymmetric space groups (prefixes C, E and A) 
are polar space groups in a broader sense (to be 
distinguished from the special case of space groups 
with axial polarity, discussed below) which means 
they contain a direction and its opposite which are 
not related by symmetry. Centrosymmetric space 
groups (those without prefix in column E) are non- 
polar because the symmetry centre relates every direc- 
tion with its opposite. In column E the xyz triplets 
on the same line are related by those rotations of the 
coordinate system which do not lead to a change of 
polarity. The polarity can be changed by changing 
the signs of the x, y and z coordinates of all atoms 
(second line of each entry in column E). In four space 
groups, however, (Fdd2, I41md, I41cd, I42d) an 
origin shift is also necessary. Contrary to the case of 
chiral space groups, where the change of chirality 
requires an inversion of the coordinate system, in 
achiral non-centrosymmetric space groups the struc- 
ture setting with changed polarity could also be 
obtained by a rotation and translation of the coordin- 
ate system. 

A particular case of the polar space groups con- 
cerns the space groups with axial polarity which is 
defined here to mean those space groups where one 
or more polar directions coincide with one or more 
axes and where the origin of at least one coordinate 
axis cannot be related to the positions of symmetry 
elements. The permitted origins (column F) have at 
least one freely adjustable parameter and correspond- 
ingly at least one of the unit cell vectors of the 
Cheshire group (column H) has a factor e. The Che- 
shire group (column G) has in this case a 'degenerate 
Bravais lattice' denoted by Z t, Z 2, Z 3 with the super- 
script denoting the number of polar coordinate 
axes. 

A space group as well as its Cheshire group (column 
G of Table 6) is based on a point group (ignoring 
translation and glide components) and a translation 
subgroup. The point group of the Cheshire group has 
at least the same order as the point group of the space 
group. The ratio of the two orders (index) corresponds 
to the number of non-redundant  xyz triplets given in 
column E of Table 6.* For enantiomorphic space- 
group pairs this calculation gives the total number of 
non-redundant  xyz triplets for both space groups. In 
Table 6 only the xyz triplets for one of the two space 
groups are listed. 

In general, the number of possible origins (column 
F of Table 6) can be obtained by dividing the volume 
of the space-group unit cell by the volume of the unit 
cell of the corresponding Cheshire group (to be calcu- 
lated from the unit-cell vectors of the Cheshire group 
listed in column H of Table 6). If, however, the types 
of their Bravais lattices differ, each volume has first 
to be divided by the number of lattice points in 
its unit cell. In space groups with axial polarity, 
characterized by degenerate Bravais lattices of the 
corresponding Cheshire groups, the origin shifts are 
continuous in one, two or three directions, but are 
discrete in the remaining direction(s). For each such 
space group, the number of entries in column F of 
Table 6 can be obtained by a procedure similar to 
that for the general case, but disregarding the degener- 
ate direction(s). 

Space group 
C222 I 

Cheshire group 
Pmmm 

Example for space group No. 20 

Corre- 
sponding Point- Bravais- 

point group Basic lattice Unit-cell 
group order vectors points volume 

222 4 a, b, e 2 abc 

m m m  8 ~a, ~b, ~¢ I ~(abc) 

Number of  non-redundant xyz triplets: ~ = 2. 

abe / ~(abc)=4. 
Number of possible origins: - ~ - /  1 

These numbers correspond to the number of  entries in columns E and F, 
respectively, of  Table 6 for space group C222~. 

The total number of different descriptions (different 
numerical values of  the representative atom coordin- 
ates) can be obtained by multiplying the number of 
non-redundant  xyz triplets (column E of Table 6) by 
the number of permitted origins (column F). Note 
that space groups with axial polarity have an infinite 
number of possible origins. The maximum number 

* In the list of non-redundant xyz triplets it is found for certain 
space groups that the rotation or inversion of the coordinate system 
requires a translation component (for example in space group Ia3). 
This can only occur if the corresponding Cheshire group is asym- 
morphic, i.e. contains at least a glide plane or a screw axis in its 
symbol. 
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of different descriptions for non-polar space groups 
is 24 (space groups P312, P()). For the C e C u 2  structure 
mentioned above with space group Imma (see Table 
l(a) there are according to Table 6 four different 
descriptions. This applies for a given choice of axes. 
The four descriptions for a < b are listed in Table 
l(b). There are four more descriptions with axes a 
and b interchanged. 

A special case occurs for structures with atoms on 
positions which differ by a permitted origin shift 
(column F of Table 6). Some of the descriptions may 
yield identical atom positions. For example, for CsC1 
with space group Pm3m the two descriptions are: 

second descr ip t ion  
first descr ip t ion  with origin shift  ~t~ 

I11 1CI in l(b) 222tll ICs in l(b) 22~ 
ICs in l(a) 000 ICI in l(a) 000. 

Proposal for structure data standardization 

The following proposal for the standardization of 
crystal-structure data* is the result of our efforts to 
establish an alloy structure-type file of limited size 
for use in our laboratory. The flow chart of the stan- 
dardization procedure is presented in Fig. 1. 

* The  fo l lowing s tandards  app ly  to s t ructures  which can be 
descr ibed  with the regular  space  groups  given in International 
Tables for Crystallography (1983). No efforts have been  m a d e  to 
include ' n o n - c o m m e n s u r a t e '  charge-densi ty  or  sp in-wave  modu la -  
t ions and  o ther  unusual  s t ructure  var ia t ions  which do not fall into 
a th ree -d imens iona l  lattice. 

Table I. Structural data for CeCu2 and KHg2 

(a) Comparison of the structure data for CeCu2 and KHg 2 
Non-standardized data after Pearson (1967) 

CeCu2 

lmma, a = 4.425, b = 7.057, 
c = 7.475 A 

x y z 

Ce in 4(e) 0 ~ 0-5377 K in 4(e) 
Cu in 8(h) 0 0.051 0-1648 Hg in 8(0 

Standardized data 

CeCu 2 

KHg2 

lmma, a=8.10,  b=5.16,  
c = 8.77 

x y z 

0 I 0-703 
0-190 ~ 0.087 

Standardization parameter 
F = 0.7655 

Imma, a = 4.425, b = 7.057, 
c = 7.475 A 

x y z 

Cu in 8(h) 0 0.051 0.1648 
Ce in 4(e) 0 ~ 0.5377 

KHg 2 had first to be transformed to a cell where a < b while retaining the standard 
lmma space-group setting (shift of  origin by aaall! and interchange of  a and b axes) and 
then different origins (000, I~0~) were tried to find the lowest standardization parameter. 

KHg2 

Standardization parameter 
F=0-7751 

lmma, a = 5.16, b=8.10, 
c = 8.77 

x y z 

Hg in 8(h) 0 0.06 0.163 
K in 4(e) 0 ~ 0.547 

(b) Structure data for CeCu2: the four possible descriptions for a unit cell 
with a < b. The coordinate triplets given here have been chosen from the 

Wyckoff positions according to the rules explained in the text 

(1) Origin shift 000 F=  0-7655 x y z 

Cu in 8(h) 0 0.051 0.1648 
Ce in 4(e) 0 ~ 0-5377 

(2) Origin shift 00½ F=0"8978 x y z 

Cu in 8(h) 0 0-551 0.3352 
Ce in 4(e) 0 ~ 0.0377 

(3) Origin shift 0-~0 F =  1.1007 x y z 

Cu in 8(h) 0 0-551 0.1648 
Ce in 4(e) 0 ~ 0.4623 

(4) Origin shift 0-~½ F =  1,3333 x y z 

Cu in 8(h) 0 0-051  0.3352 
Ce in 4(e) 0 ~ 0.9623 

Choice  o f  unit-cell  and  space -g roup  sett ing with the prin-  
cipal  convent ions  
(a )  s t anda rd  sett ing o f  International Tables for Crystallogra- 

phy (1983) (b-axis  unique,  triple hexagona l  unit  cell, 
s y m m e t r y  centre at origin) 

(b) Niggli reduced  cell or  cell with a < b < c if  not  def ined 
o therwise  by symmet ry  

Choice  o f  representa t ive  coord ina te  triplet for  all a toms,  

taking into accoun t  
(a)  the pe rmi t t ed  origins 
(b) the pe rmi t t ed  ro ta t ions  of  the coord ina te  sys tem 
(c) the e n a n t i o m o r p h i c  s t ructure  represen ta t ion  

Orde r ing  and  r enumber ing  o f  the a toms  in the final list 

Fig. 1. Flow char t  o f  the s tandard iza t ion  procedure .  

Choice of unit cell and space-group setting 

(1) Right-handed coordinate system. 
(2) Standard space-group setting, as given in the 

1983 edition of International Tables for Crystallogra- 
phy, Vol. A, with the following additional restrictions: 

(a) b-axis setting for monoclinic space groups;? 
(b) obverse triple hexagonal unit cell for trigonal 

R space groups; 
(c) the setting with the symmetry centre at the 

origin in all cases where two origin choices are given 
in International Tables for Crystallography; 

(d) for the enantiomorphic space-group pairs, 
the space group with the smallest index for the rel- 
evant screw axis is normally taken as standard (for 

t For  each monoc l in ic  space  g roup  six descr ip t ions  are given in 
International Tables for Crystallography (1983), three with b unique  
and three with c unique.  They  are charac ter ized  by  only one 
standard short symbol (it a p p e a r s  in large letters at the top  o f  all 
pages  devo ted  to a par t icu lar  space  group)  which co r r e sponds  to 
the s p a c e - g r o u p  sett ing with axis b unique and  which has  a l ready  
been given in the 1935 and  1952 editions.  
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example  P4~32 instead of  P4332). However ,  if the 
absolute  configurat ion has been determined,  it is 
impor tan t  not to lose this information.  In this case a 
special p rocedure  will be appl ied which will be 
discussed below. 

(3)(a) Triclinic cells are chosen such that  a, b and  
c are the shortest  three non-coplanar  lattice transla-  
tion vectors that  define the Niggli reduced cell in a 
r ight -handed coordinate  system. The cell edges are 
labelled so as to have a < b < c. There are two kinds 
of  triclinic cells. Those of  type II have a -> 90 °, fl -> 90 °, 
7 ->90 ° and those of  type I a < 9 0  ° , f l < 9 0  ° and 
y < 90 °. 

(b) For  monocl in ic  space groups with a primitive 
Bravais lattice and without  a glide plane a ' reset '  
Niggli reduced cell is used which we define in the 
fol lowing way: the axes of  the Niggli reduced cell of  
type II  are relabelled so as to obtain a cell with a < c 
and 13 -> 90 °. 

For  monocl inic  space groups with centred Bravais 
lattices or glide planes we select a and e as the shortest 
non-paral le l  lattice t ranslat ion vectors perpendicu la r  
to b - under  the condi t ion that/3 is non-acute  - which 
allow the structure to be described with the s tandard  
monocl inic  space-group symbol (for details see 
Gelato & Parth6, 1984). 

(c) Or thorhombic  structures where the space- 
group symbols  do not  prescribe a par t icular  labelling 
of  any of  the three unit-cell axes have to be described 
with a unit cell where a < b < c. These space groups 
have cubic affine normalizers  (Burzlaff & Zimmer-  
mann,  1980). I f  the space-group symmetry  prescribes 
a label of  one unit-cell axis (it is always the c axis in 
International Tables for Crystallography), the two 
other  being free, unit cells with a < b are used. These 
o r thorhombic  space groups have te t ragonal  affine 
normalizers.  For  all other  or thorhombic  structures 
(those with o r thorhombic  affine normalizers  which in 
these cases are identical with the Eucl idean nor- 
malizers) the s tandard  space-group setting fixes the 
p roper  labelling of  the three unit-cell axes. 

All these conventions are listed in condensed  form 
in Table 6. For a s t andard  structure description,  all 
valid descript ions have to be compared  and a selec- 
tion has to be made.  

Choice of  representative coordinate triplets 

Having  decided on the unit  cell, we want  to find a 
s t andard  for the choice of  the representat ive coordin-  
ate triplet of  a Wyckoff  position. This may  be done 
in the following way:  As representat ive posit ional  
coordinates  for an a tom those xyz values have to be 
chosen which satisfy 0-< x, y, z < 1 and which corres- 
pond to the first xyz triplet printed in International 
Tables for Crystallography for its Wyckoff  point  set. 
For point  sets with unspecial ized coordinates ,  differ- 
ent symmetry-equivalent  xyz triplets of  the same point  

set m a y  cor respond to the first xyz triplet pr inted in 
International Tables for Crystallography, Vol. A. In 
this case a rule is needed  to choose between the 
various possible triplets.* We adopt  that  triplet for 
which (xE-l-y2-l-Z2) I/2 is a minimum.% I f  the same 
min imum square-root  value is found with several xyz 
triplets, the triplet for which x has the smallest  value 
and where  necessary y also has the smallest  value is 
adop ted  as s tandard .  

The standardization parameter F 

The sum of  the minimal (xE+y2+z2) 1/2 values of  
all s tandard ized  representat ive coordinates  of  the 
atoms in the unit cell of  a structure is taken as a 
s tandard iza t ion  parameter ,  F, to character ize the 
structure with a given choice of  t ranslat ion,  rotat ion 
and inversion of  the coordinate  system. 

For  the s tandard  description of  a structure,  that  
descr ipt ion is chosen for which the s tandard iza t ion  
parameter ,  F, is a minimum.$  As an example  we can 
see in Tables l ( a )  and (b) that the descript ion for 
CeCu2 found  in the li terature is the descript ion with 
the smallest  s tandard iza t ion  parameter .  Only the 
order  o f  the atoms had  to be changed according to 
the fur ther  rules given below. I f  several possible 
descript ions lead to the same value of  the s tandardiz-  
ation parameter ,  then that  description is chosen where 
the sum of  the x coordinates  of  all a toms is the 
smallest. I f  this procedure  is equivocal,  the sum of  
the y coordinates  is used as well and then the sum 
of  the z coordinates.  I f  even this does not lead to a 
result one compares  the sum of  the three coordinates  
of  the fia'st a tom in the different descript ions (after  
the order ing of  the a tom list). The descript ion with 

* Our original idea to choose as representative coordinates those 
corresponding to sites which are within the asymmetric unit, as 
defined in International Tables for Crystallography (1983) had to 
be abandoned. Data points within the given asymmetric unit do 
not necessarily correspond to the first xyz triplet given for each 
point set in International Tables for Crystallography (1983) but to 
a symmetry-equivalent point. For example, for Pn3n, origin choice 
2 with symmetry centre at origin, the asymmetric unit with ¼ -< x <- 3, 

-< y -< 43-, ~ -< z -< 3, y -< x, z -< y does not contain point 000, the first 
entry for Wyckoff letter 2(a), but instead the symmetry equivalent 
I l l  ~ .  An additional difficulty exists with a data point which is on 
the surface of the asymmetric unit since it may appear more than 
once. Special rules would be needed for each space group to make 
the proper choice. 

t We choose this formula because in 'fractional space', i.e. not 
considering the cell parameters, it corresponds to the distance from 
the origin of an atom with coordinates xyz. 

?- For space groups with axial polarity we have the additional 
difficulty that in at least one direction the origin cannot be fixed 
by the symmetry elements. Continuing in the same manner as 
above, we choose the origin for these groups to be based on the 
coordinates themselves in such a way as to minimize F, which 
requires summing over all atoms (not only the representative atoms) 
in the unit cell. The mathematical formulation is discussed in the 
STRUCTURE TIDY program description (Gelato & Parth6, 1984). 
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the smallest sum is taken as standard. If this is 
ambiguous one compares the sum of the x, y and z 
values of the second atom and so on. 

If, as in the case of CsC1, the different possible 
descriptions lead to the same numerical values of the 
atom positions, either description may be taken as 
standard. 

Ordering and renumbering of atoms 

For the presentation of atomic coordinates in the final 
list the following convention is adopted. The atoms 
are listed in the order of their Wyckoff letters, as given 
in International Tables for Crystallography (1983) 
(from top to bottom), regardless of the atomic species 
involved. This deviates from the usual convention of 
ordering the atoms, but permits types and antitypes 
as well as alloys with mixed site occupation to be 
described in a uniform way and avoids any con- 
troversy concerning the proper sequence of the ele- 
ments in the chemical formula. However, in order to 
be able to take in at a glance the different positions 
occupied by one particular element in a structure, the 
different element symbols in the final atom list are 
displaced sideways by different amounts (see 
examples). If different coordinate triplets with the 
same Wyckoff letter appear, they are arranged accord- 
ing to increasing x, then increasing y and finally 
increasing z values. 

The numbering of atoms of one kind which occupy 
the same or different Wyckoff positions in a structure 
is to follow the sequence of their representative xyz 
triplets in the final structure data list.* 

Once the atoms are properly numbered and the 
order of all atoms in the final list has been established, 
the numerical values for y (and z) have to be replaced 
by their analytical expression provided they are listed 
as such in International Tables for Crystallography 
(1983). For examples see Tables 2 and 5. 

Occupation factors are given in the final list as in 
the unstandardized data since only the structure sites 
are affected by a standardization. 

The errors of the atom coordinates in the standard- 
ized structure description are calculated from the 
original data by the propagation of errors. Details 
will be discussed by Gelato & Parth6 (1984). 

and polarity of all non-centrosymmetric structures. 
To indicate these results in the standardized structure 
data the following procedure is proposed: 

Structures based on a space group which has an 
enantiomorph are always standardized in the space 
group with the smallest index for the relevant screw 
axis (groups with prefix E of Table 6) if necessary, 
by changing the signs of all coordinates to perform 
the change to the enantiomorphic space group. If the 
experimental data indicate that the correct space 
group is the one with the higher index, minus signs 
are placed in front of the standardized atom coordin- 
ates and the real space group with higher index is 
listed. As an example we consider low-quartz (Don- 
nay & Le Page, 1978) for which the standardized 
descriptions of the two enantiomorphs are as follows: 

Laevoquartz 
P3121 

6 0  in 6(c) 0.41 0.14 0-12 
3Si in 3(a) 0.53 0 

Dextroquartz 
P3221 

6 0  in 6(c) -0.41 -0 .14  -0 .12  
I 3Si in 3(a) -0-53 0 -3  

The procedure is similar for all other non-centrosym- 
metric structures. The structures are first standardized 
in the normal way considering all rotations and inver- 
sion of the coordinate system. If the chirality or the 
polarity of the standardized structure data are differ- 
ent from that found by experimental evidence, minus 
signs are placed in front of the standardized atom 
coordinates. For seven space_groups, however, (Fdd 2, 
I41, 14122, I41md, I4~cd, I42d and F4132) also the 
necessary translation component has to be given 
(Table 6, column E, first entry on the second line for 
the corresponding space group). This origin shift has 
to be given separately for all atom coordinates. For 
example, for F4~32: -xs  +~, -Ys +~, -zs +¼ where x~, 
ys and z~ are the atom coordinates obtained by normal 
standardization. 

The adopted procedure allows an easy comparison 
of the atom coordinates of identical structures which 
differ only in chirality or polarity. 

Procedure to be adopted to indicate the chirality and 
polarity in the standardized structure data 

A study of Bijvoet differences should, in appropriate 
circqamstances, permit determination of the chirality 

* Rotation of  the coordinate system as well as a change of  the 
origin needed for standardization will lead to a Wyckoff position 
having the same point symmetry but which may have a different 
Wyckoff letter. This may have an effect on the sequence of  the 
representative atom coordinates and on the numbering of  the atoms 
of  one kind. 

Examples for standardized isotypic structures 

(a) CeCu2 and KHg2 are two isotypic structures, 
for which the non-standardized data are given in the 
upper part of Table l(a). Inspection of the standard- 
ized data, given in the lower part, makes the isotypy 
of the two structures evident. 

(b) The published and the standardized structure 
data for Ca31Sn20 and PUalRh2o can be found in Table 
2. Both compounds have moderately complicated 
alloy structures with 15 different atom sites. The 
isotypy of these two compounds was not expected. 
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Table 2. Published and standardized structure data of Ca31Sn2o and Pu31Rh2o 

Data  for  Ca31Sn2o 
(Fornasini  & Franceschi ,  1977) 

Data  for  Pu 31Rh2o 
(Cromer  & Larson,  1977) 

14/mcm, c/a = 3" 189 14/mcm, c/a = 3"334 
F = 6.6780 F = 6.7647 

x y z x y z 

Ca(l) in 8(h) 0.3405 ½ +x 0 Pu(l) in 4(b) 0 ½ 
Ca(2) in 32(m) 0.2103 0-0519 0.0533 Pu(2) in 8(g) 0 ½ 0.0756 
Ca(3) in 8(g) 0 ½ 0.0716 Pu(3) in 8(g) 0 ! 0.1656 
Ca(4) in 32(m) 0.0808 0.2161 0.1365 Pu(4) in 8(h) 0.1586 x +I 0 
Ca(5 ) in 8(g) 0 ½ 0.1678 Pu(5) in 32(m) 0-2947 0.4299 0.0500 
Ca(6) in 32(m) 0.2138 0.0861 0.2125 Pu(6) in 32(rrt) 0.2855 0.5774 0.1346 
Ca(7) in 4(b). 0 ! ~ Pu(7) in 32(m) 0.2819 0.4125 0.2114 
Sn(l) in 4(c) 0 0 0 Rh(1) in 4(c) 0 0 0 
Sn(2) in 8(h) 0.0859 ½ +x 0 Rh(2) in 4(a) 0 0 ¼ 
Sn(3) in 16(/) 0.3019 ~ +x 0-0748 Rh(3) in 8(f) 0 0 0.0940 
Sn(4) in 8(f) 0 0 0.0949 Rh(4) in 8(./0 0 0 0.1734 
Sn(5) in 16(/) 0.1617 1+x 0.1231 Rh(5) in 8(h) 0.4035 x +I 0 
Sn(6) in 8(f) 0 0 0.1733 Rh(6) in 16(/) 0.1812 x + ½ 0.0726 
Sn(7) in 16(/) 0.3469 1+x 0.2087 Rh(7) in 16(/) 0.3417 x +I 0.1269 
Sn(8) in 4(a) 0 0 ¼ Rh(8) in 16(/) 0.1536 x +t2 0.2109 

Standard ized  data  for  Ca31Sn2o 
F = 6.6780 

Standard ized  da ta  for  Pu31Rh20 
F = 6.6688 

x y z x y z 

Ca(l) in32(m) 0.0808 0.2161 0.1365 Pu(l) in 32(m) 0.0774 0.2145 0.1346 
Ca(2) in 32(m) 0.2103 0.0519 0.0533 Pu(2) in 32(m) 0-2053 0-0701 0-0500 
Ca(3) in 32(m) 0.2138 0.0861 0.2125 Pu(3) in 32(m) 0.2181 0.0875 0.2114 

Sn(l)in 16(/) 0.1531 ½+x 0.2913 Rh(1)in 16(/) 0.1536 ½+x 0.2891 
Sn(2)in 16(/) 0.1617 ~+x 0.1231 Rh(2)in 16(/) 0.1583 ½+x 0.1269 
Sn(3)in 16(/) 0.1981 ½+x 0.4252 Rh(3)in 16(l) 0.1812 ~+x 0.4274 
Sn(4) in 8(h) 0.0859 1+x 0 Rh(4) in 8(h) 0.0965 ½ +x 0 

Ca(4) in 8(h) 0.3405 ~+x 0 Pu(4) in 8(h) 0.3414 t +x  0 
Ca(5) in 8(g) 0 I 0.0716 Pu(5) in 8(g) 0 ½ 0.0756 
Ca(6) in 8(g) 0 I 0.1678 Pu(6) in 8(g) 0 I 0.1656 

Sn(5) in 8(f) 0 0 0.0949 Rh(5) in 8(3") 0 0 0.0940 
Sn(6) in 8(f) 0 0 0.1733 Rh(6) in 8(f) 0 0 0.1734 
Sn(7) in 4(c) 0 0 0 Rh(7) in 4(c) 0 0 0 

Ca(7) in 4(b) 0 ~ ~ Pu(7) in 4(b) 0 ½ 
Sn(8) in 4(a) 0 0 ~ Rh(8) in 4(a) 0 0 

In the case of Pu31Rh2o an origin shift of 001 leads to the smallest standardization parameter. No origin shift was necessary for Ca31Sn2o; however, the 
atoms had to be relabelled and put into a different order. 

Table 3. Standardized structure data of R-phase Mo- 
Co-Cr (Komura, Sly & Shoemaker, 1960) 

R3, a = 10.903, c = 19.342/~, 

M = Cr  + C o  x y z 

M(1) in 18(f) 0.10523 0.38767 0.06667 
Mo(l) in 18(f) 0. I 1153 0.39957 0.28887 

MOo.62Mo.38 in 18(f) 0.1265 0" 1759 0.1031 
Moo. t l Mo.s9 in 18(f) 0.1393 0.0212 0.3038 

M(2) in 18(f) 0-1969 0.2250 0.2315 
M(3) in 18(f) 0-24593 0.41967 0.16467 

MOo.76Mo.24 in 18(f) 0.2579 0.0330 0.1817 
MOo.53Mo.47 in 18(f) 0.2687 0.1132 0.0348 

M(4) in 6(c) 0 0 0.1956 
Mo(2) in 6(c) 0 0 0.4265 

MOo. IIMo.s9 in 3(a) 0 0 0 

To obtain this standardized description with the lowest value of the 
standardization parameter (F=3.6121) the coordinate system had to be 
rotated (xyz--* yx~) and the origin shifted by 00½. 

(c) The R-phase Mo-Cr-Co,  for which the stan- 
dardized data are found in Table 3, represents an 
example of a complicated alloy structure with sites 

having mixed occupation. The standardization leads 
here to a rotation of the coordinate system. 

(d) The standardized data of Y 3 C o 2  and Mo2IrB2, 
shown in Table 4, make it evident that the ternary 
compound is a substitution derivative of the binary 
structure type. 

(e) The non-standardized literature descriptions of 
the r/-carbide, TiaNi20 and Ti2Ni structures, presen- 
ted in the upper part of Table 5, do not allow the 
relation between these structures to be recognized. 
However, the standardized descriptions given in the 
lower part of Table 5 show immediately that W4C02C, 
W3Fe3C and TiaNi20 are isotypic and that Ti2Ni has 
the same atom arrangement except for one structure 
site which is not occupied. 

Problems with the proposed standardization 

There are two kinds of problems which can arise with 
the proposed standardization. One concerns the 
proper choice of basis vectors for those space groups 
where the cell metric is used as a guide for the choice 
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Table 4. Published and standardized data for Y3C02 and Mo2IrB2 

Y3Co2 Mo2I rB2  
( M o r e a u ,  Par th6  & P a c c a r d ,  1975) (Rog l ,  B e n e s o v s k y  & N o w o t n y ,  1972) 

Pnnm, a = 12.248, b = 9 . 3 8 9 ,  c = 3 . 9 7 5 / ~  Pnnm, a = 9 . 4 2 2 ,  b = 7 .356,  c = 3 . 2 3 1  

x y z x y z 

Y(l)  in 4(g) 0.128 0.193 0 Ir in 4(g) 0-11 0.12 0 
Y(2) in 4(g) 0.387 0-373 0 M o ( l ) i n  4(g) 0.37 0-32 0 
Y(3) in 4(g) 0.137 0.574 0 Mo(2) in 4(g) 0.64 0.07 0 
Co(1) in  4(g) 0.269 0.860 0 B(I) in 4(g) (0.04 0.61 0)* 
Co(2) in 4(g) 0.462 0.883 0 B(2) in 4(g) (0.25 0.61 0)* 

S t a n d a r d i z e d  data  S t a n d a r d i z e d  data 
F = 2 .2469 F = 2-2359 

Pnnm,  a = 9 . 3 8 9 ,  b =  12.248, c = 3 . 9 7 5 / ~  Pnnm,  a = 7 . 3 5 6 ,  b = 9 . 4 2 2 ,  c = 3 . 2 3 1 / ~ ,  

x y z x y z 

Co( l )  in 4(g) 0.117 0.038 0 B(I) in 4(g) (0.11 0.04 
Co(2) in 4(g) 0.14 0.231 0 B(2) in 4(g) (0.11 0-25 

Y(1) in 4(g) 0-193 0-628 0 Mo(l)  in 4(g) 0.18 0.63 
Y(2) in 4(g) 0.426 0.363 0 Mo(2) in 4(g) 0.43 0.36 
Y(3) in 4(g) 0.627 0.113 0 l r i n  4(g) 0.62 0.11 

o)* 
o)* 
o 
o 
o 

For Y3C02 the a and b axes had to be interchanged and the origin shifted by 0½0, while in the case of Mo2IrB2 after an interchange of  a and b the 
origin was shifted by 100. 

* The B positions have been estimated using space considerations. 

Table 5. Published and standardized structure data for W4C02C , W3Fe3.C, Ti4Ni20 and Ti2Ni 

W4Co2C 
[SR (1954) 18, 81]* 

Fd3m, origin away from 
symmetry centre 

x y z x y z 

' 16Fe(I) in 16(d) ~ ~ 2 t 16C in 16(c) ~ ~ 
16W(l) in 16(d) 5 [ ~ 32Fe(2) in 32(e) 0.7047 x x 
48W(2) in 48(f) 0.195 0 0 48W in 48(f) 0.3228 ~ 
32Co in 32(e) 0.825 x x 16C in 16(c) 0 0 0 

Standardized data Standardized data 
F =  1-6774 F =  1.6829 

W3Fe3C 
[SR (1967) 32A, 45] 

Fd3m, symmetry centre at origin 

Ti4Ni20 Ti2Ni 
[SR (1963) 28, 140] [SR (1963) 28, 21] 

Fd3m, origin away from Fd3rn, origin away from 
symmetry centre symmetry centre 

x y z x y z 

' 16Ti(I) in 16(c) k ~ 16Ti(l) in 16(c) k k ~ 
48Ti(2) in 48(f) 0-312 0 0 48Ti(2) in 48(f) 0-311 0 0 
32Ni in 32(e) 0.916 x x 32Ni in 32(e) 0.912 x x 
160 in 16(d) 5 ~ _~ 

Standardized data 
F = 1-7069 

x y z x y z 

W(I) in 48(f) 0.430 k k W in 48(f) 0.4272 ~ 
Co in 32(e) 0.200 x x Fe(l) in 32(e) 0.2047 x x 

C in 16(d) ~ ~ l C in 16(d) ~ I 
W(2) in 16(c) 0 0 0 Fe(2) in 16(c) 0 0 0 

Shift of origin from Shift of origin from 
published data 55s published data ~½~ 

* References to Structure Reports, giving date, volume number and page number. 

x y z 

Ti(I) in 48(f) 0.437 k 
Niin 32(e) 0.209 x x 
O in 16(d) ~ ~ ½ 

Ti(2) in 16(c) 0 0 0 

Shift of origin from 
published data ~ ~ t 

Standardized data 
F = 0 . 8 3 9  

x y z 

Ti(l) in 48(f) 0.436 ~ 
Ni in 32(e) 0.213 x x 

Ti(2) in 16(c) 0 0 0 

Shift of origin from 
published data ~-~ 

of the unit cell. The second concerns the standardiz- 
ation of nearly isotypic structures where one or several 
positional parameters vary around a special value. 

In Table 6 are listed 53 space groups where the 
numerical values of  the lattice parameters are used 
to find a reduced cell and/or  to label the axes for a 
standard description. If by chance the cell parameters 
are not significantly different, a special procedure is 
necessary for the standardization. In this case one 
applies the regular standardization procedure to each 
of the equivalent structure descriptions and the final 
selection is made according to the smallest value of 
the standardization parameter. 

A second problem exists with closely related but 
slightly different structures which each can be for- 
mally standardized, but show no correspondence in 
their standardized descriptions. This arises because 
there is a discontinuity in the numerical x, y, z values 
at the limit of the unit cell (or any other chosen 
translation period) and any standardization pro- 
cedure would be affected by this difficulty. A similar 
case, a discontinuity close to a special value, was 
found for P u 3 C o  , Zr3Co, PuBr 3 and TbC13. The first 
two compounds  have similar standardized descrip- 
tions as shown in the lower part of Table 7, while the 
two nearly isotypic halogenides have standardized 
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T a b l e  6.  Hermann-Mauguin symbols of  space groups in standard setting, extra conditions for choice of  unit 
cell, extra condition for the labelling of  the axes, list of  non-redundant xyz triplets, permitted origins of  unit cell, 

symbols and basis vectors of  corresponding Cheshire groups. 
The prefix in co lumn  E indicates  if the space g roup  is chiral (G) with its special  case o f  e n a n t i o m o r p h i c  (E) or achiral  (A) with its 
special case o f  cen t rosymmet r ic  (wi thout  prefix), xyz triplets in the second  line co r respond  to a changed  chirali ty and  polarity.  

A B C D E F G H 
S t a n d a r d  

s p a c e -  

g r o u p  E x t r a  c o n d i t i o n  fo r  L a b e l s  N o n - r e d u n d a n t  

N o .  s y m b o l  c h o i c e  o f  u n i t  cel l  o f  a x e s  x y z  t r i p l e t s  P e r m i t t e d  o r i g i n s  

TRICLIN IC  Either type I cell, positive reduced form: a < 90,/3 < 90, y < 90* or type II 

1 P I Niggli reduced cell a < b < c C xyz 
_ _ _  
xyz 

2 P /  Niggli reduced cell a < b < c xyz 

MO N O CLI  NIC b-axis un ique ; /3  > 90, a = y = 90 ° 

3 P2 Reset Niggli reduced a < c C xyz 
cell o f  type II £y-£ 

4 P2~ Reset Niggli reduced a < c G xyz 
cell of  type II .~3~ 

5 C2 a and c shortest  translation C xyz 
vectors which agree with ~y-~ 
space group 

6 Pm Reset Niggli reduced a < c A xyz 
cell of  type II .fy-~ 

7 Pc a and c shortest  translation A xyz 
ve~.tors which agree with ~fi~ 
space group 

8 Cm a and c shortest  translation A xyz 
vectors which agree with ,~3~ 
space group 

9 Cc a and e shortest  translation A xyz 
vectors which agree with .~)7~ 
space group* 

10 P 2 / m  Reset Niggli reduced a < c  xyz 
cell o f  type II 

11 P 2 J m  Reset Niggli reduced a < c xyz 
cell of  type II 

12 C 2 / m  a and c shortest translation xyz 
vectors which agree with 
space group 

13 P2/c  a and c shortest translation xyz 
vectors which agree with 
space group 

14 P 2 t / c  a and c shortest  translation xyz 
vectors which agree with 
space group 

15 C 2 / c  a and c shortest translation xyz 
vectors which agree with 
space g roupf  

C h e s h i r e  B a s i s  v e c t o r s  o f  

g r o u p  C h e s h i r e  g r o u p  

cell, negative reduced form: a -> 90, / ]  ~ 90, y -> 90 ° 

xyz ZSl  co, eb, ec 

I I 1 1 1 1 1  000, '00, 0~0, 00~, 0½2, 202, ~0, ½½½ er '0, ~b, ~c 

0y0, 0y½, ~y0, ]y] z t 2 1 m  ~a, eb, 12c 

OyO, Oy~, ½YO, ~y] Z t2 /  m 10, eb, ½c 

OyO, Oy½ z t 2 /  m ~0, eb, ~c 

xOz, x~z Ze2 /  m to, ~b, ec 

xOz, x~z Ze2 /  m co, ½b, ec 

xOz Z22/  m ca, ½b, ec 

xOz Z22/m e0, ½b, ec 

0 0 0 ,  i ! i I = ' II ~00, 020 , 00~, 0~2, ~0~, HO, ½½½ P 2 / m  ~0, ½b, ~c 

O00,1 1 I ~!! !~t lln !11 ~00, 0~0, 00~, P2/  m ~ ~`2,~b, ~c v22 ,  2v2 ,  22 v ,  222 

000, 0~, 0~0, 0½½ P2/  m 10, ~b, ½c 

1 I I 11 I l 111 
0 0 0 ,  2 0 0 ,  0 ~ 0 ,  0 0 2 ,  0 ~ ,  ~ 0 ~ ,  ½ ~ 0 ,  ~ - )  P 2 / m  ½0, ]b, ½c 

000, ~00, 0~0, OOt, nv~., . . . . .  ~ ,  2,~,tl . . . .  ~.~ P 2 / m  ~0,½b,~c' i 

000, 00½, 0½0, 0~  P 2 / m  ~0, ½b, ½c 

O R T H O R H O M B I C  a =/3 = y = 90 ° 

16 P222 a < b < c C xyz 
- _ _  
xyz 

17 P2221 a < b [00~]~: C xyz 
_ _ _  
xyz 

18 P21212 a < b C xyz 
_ _ _  
xyz 

19 P212121 a < b < c  t444Jr!!11§ C x y z  
xyz 

20 C2221 `2 < b [00~]¢ C xyz 
_ _ _  
xyz 

21 C222 a < b C xyz  
- _ _  
xyz 

22 F222 a < b < c C xyz 
_ _ _  
xyz 

23 1222 a < b < c C xyz 
_ _ _  
xyz 

24 I212121 a < b < c  [ ~ ] §  C xyz 
_ _ _  
xyz 

25 Pmm2 a < b A xyz 
- _ _  
xyz 

26 Pmc21 A xyz 
_ _ _  
xyz  

27 Pcc2 a < b A xyz 
- _ _  
xyz 

28 Pma2 A xyz 
_ _ _  
xyz 

29 Pca21 A xyz 
_ _ _  
xyz 

30 Pnc2 A xyz 
- _ _  
xyz 

31 Pmn2, A xyz 
_ _ _  
xyz 

! ! ooo, 'oo, o~o, ooL o", ~o~, ½½o, ~"' emmm ½0, ½b, 'c 

000,½00, ' I , ,  t , o~o, ool, o~, ~o~, ½2to, ' "  Pmmm ½,2, ½b, ~c 
I I II 1!1 000, 2100, 0~0, 00½, 0]], y.O~, ~.~0 . . . .  Pmmm ½0, ½b, ~c 

I i .[ i i  i i  000, ½00, 0~,0, 00~, 0"~2 , ½~, ~0,  H½ Pmrnm ½0, ½b, ½c 

000, 00½, 0½0, 0" Pmmm l , 20, ~b, 1,c 
000, 00~, 0~0, Ole½ Pmmm ~0, ~b, ]c 

0 0 0 ,  ~ ,  ll! ~ Immm i i = 222, 444  ~0 ,  ~b, ~c 

i I i  000, 00½, 0~0, 0~  Pmmm ~0, ½b, ½c 

i i i 000, 00~, 0~0, 0~½ Pmmm ~0, ½b, ½c 

00z, 0~z ,  ½Oz., 2211z Z l m m m  ½0, ~b, ec 

0 0 . ~  0½Z~ ½ 0 Z ,  22 iiZ Z l m m m  ½0,  ] b ,  e c  

1 i i OOz, 02 z, ~Oz, ~½z Z ' m m m  '0, ½b, ec 

OOz, 0~z ,  ½0z,  22 uz Z l m m m  ~0, l,b, ec 

OOz, O'z, ~o~ " 'i~z Z ' m m m  ½0, Ib, ec 

OOz, 0½z, ~Oz, ½½z Z l m m m  1 ~_ ,0, 2b, ec 

OOz, O~,z, ~Oz, ½½z Z t m m m  ½0, ½b, ec 
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T a b l e  6 ( c o n t . )  

A B C D E F G 

S t a n d a r d  
s p a c e -  
g r o u p  E x t r a  c o n d i t i o n  fo r  L a b e l s  N o n - r e d u n d a n t  C h e s h i r e  

No .  s y m b o l  c h o i c e  o f  un i t  cell  o f  a x e s  x y z  t r ip l e t s  P e r m i t t e d  o r ig ins  g r o u p  

32 Pba2 a < b A x.vz OOz, 012. ½0z. ~ z  ~ ~ Z~ mmm 
_ _ _  

xyz 
33 Paa2, A xyz OOz, ~z ,  ~Oz, ½~z Z ' m m m  

34 Pnn2 a < b A xyz OOz, O~z, ~Oz, ~2z ~ Z tmmm 

35 Cram2 a < b A xyz OOz, O~z Z ~ mmm 
_ . _  

xyz 
36 Cmc21 A xyz OOz, O~2z Z t m m m  

_ _ _  

xyz 
37 Ccc2 a < b A xyz 00~ O~z Z t  mmm 

38 Atom2 A xyz OOz, ~Oz Z I m m m  
xyz 

39 Abm2 A xyz OOz, ~Oz Z I m m m  
_ _ _  

xyz 
40 Area2 A xyz 007., ~Oz Z* mmm 

_ _ _  xyz 
41 Aba2 A xyz 00~ lOz Z ~ mmm 

x.vz 
42 From2 a < b A xyz OOz Z~ mmm 

_ _ _  

xyz 
43 Fdd2 a < b [ ~ . ~  A xyz OOz Z '  ban 

l - - x l - - . l - -  z 
4 4 .g4 

44 lmm2 a < b A xyz OOz, Olzz Z ~ mmm 

45 lba2 a < b A x.vz OOz, O~z Z ~ mmm 

46 lma2 A xyz OOz, O~z Z ~ mmm 

! II 1 47 ~mmm a < b < c ~vz 000, ~00, ~O. 00~, 0~, ~0 . . . .  O, ~h Pmmm 
48 Pnnn Origin at centre of  symmetry a < b < c xyz 000,1 : 1 I 1 11 200, O~Os O02s 02~s 20~2, 220, t:[![ Pmmm 
49 ec~m ,~ < b xy~ 000, ~00, 0~0, OOL 0~, ~0~, ~0, ~ e, nmm 

1 1 1 11 50 Pban Origin at centre of  symmetry a < b xyz 000, ~0 ,  0t0, 00~, 02t, ~ ,  ~20, ~ Pmmm 
5 i Pmmo ¢yz ooo, ~oo, o~o, ~ ,  o~, toL ~o, ~½~ ~ m m  
52 Pnna xyz 000, ~00, 0~0, 00~, 0~t, t0~, ½t0, t½t Pmmm 
53 Pinna xyz 000, ~00, 0~0, 00~, 0~, ~0~, ½½0, ~ t  Pmmm 

t 1 1 It It 54 Pcca xyz 000, t00, 0~0, 00~, 0~2, ~02, ~0, ~2~ Pmmm 
55 Pbam a < b xyz 000, ~00, ~0 ,  00~, 012½, ½~, ~t0, ~ Pmmm 
56 Pccn a < b xyz 000, ~00, 0~0, 00t, O~ 1,120~, tt0, ~ Pmmm 
57 Pbcm xyz 000, t00, 0~0, 00~, 0~, ~012, ~0, ~ Pmmm 
58 Pnnm a < b xyz 000, ½00, 0~0, 00~, 0~t , ~0t, ~0, ½~ Pmmm 
59 Pmmn Origin at centre of  symmetry a < b xyz 000,100, ~2~,~ln ~:,~ql -,22,~12~2,1n122 v,lln 222111 Pmmm 
60 Pbcn xyz 000, to0, 0~0, 00L 0]~, ~0~, ~0, ½~t Pmmm 
6~ ~,¢o ~ < b < ~ [ ~ ] * *  xyz ooo, ~oo, ~ ,  ~ ,  o~, ~o~, ~o, t~ emmm 

1 1 11 1 1 62 Pnma xyz 000, ½00, 0~20 , 002, 02~, ~ ,  220, 2t2 Pmmm 
63 Cmcm xyz 000, 00], 0~0, 0~ IVarnrn 
64 Cmca xyz 000, 00~, 0~0, 0~ Pmmm 
65 Cmmm a < b xyz 000, 00~, 0~0, Ol~ Pmmm 
66 Cccm a < b xyz 000, 0012, 0~0, 0½~ Pmmm 
67 Cmma a < b []~0]tt xyz 000, 00~, 0~0, 0~½ Pmmm 
68 Ceca Origin at centre of  symmetry a < b [~O]tt  xyz 000, 00~, 0~0, 0~ Pmmm 
69 Fmmm a < b < c xyz 000, ~ Pmmm 
70 Fddd Origin at centre of  symmetry a < b < c [~0~]~:~: xyz 000. ~1~ Pnnn 
71 lmmm a < b < c xyz 000. 00~. ~0 .  OX2~ Pmmm 
72 lbam a < b xyz 000. 001.0~0. O~ t Pmmm 
"73 lbca a < b < c [ ~ ] §  xyz 000, 0~, ~0,  C~½ Pmmm 
74 lmma a < b [ ~ ] ¶  xyz 000, 00[, 0~0, 0121 Pmmm 

TETRAGONAL a = b, a = ~ = 3' = 90 °, no extra conditions for the labelling of  axes 

75 P4 C xyz, £y~ 
:~9~ x~ 

76 P41 E xyz, ~y'2 
77 P4 2 C xyz, ~Ty£, 

xyz, xyz 

78 P43 Enantiomorph of  P41 
79 14 C xyz, fO"2 

~ 9 ~ ,  xyz 
80 141 C xyz, yx~. 

~ - y~ ~ - x ~  

81 P4 A xy~ ~ 

OOz, ~z Z ~ 4 /  m m m  

OOz, ~z  Z ~422 
007., ~ z  Z ~ 4/ mmm 

OOz Z~ 41mmm 

OOz Z ~ 4/ nbm 

000, 00~, ~0, ~I~ P4/ mmm 

Basis  v e c t o r s  o f  
C h e s h i r e  g r o u p  

'a. 'b, ~c 

'o. ~ b , .  

Io~ tb, -- 

12o, ~b, ec 

12o, ½b, . 

~a, ½b,.  

"~,'b, ~ 

1o, ~b , .  

"a, ~b , .  

½a, ~b , .  

~,~ ~b, ,c 

½o. ~b , .  

~a, ~b. ec 

~ ~b, ~c 
~c~ ~b, ~c 
12a. l b. l c 
~a,~b,~c 
½o, tb, ~c 

½a.½b,½c 
~a.~b,~c 
~o.~b,~ 

½a, ½b, ½c 
~½b,~c 
~a,~b,~c 
~a, ½b, ~c 
½~ ~b, tc 

~ b , ~ c  
~a, lzb, ½c 

~o.~b,½c 
~a,½b,~c 
~o.~b,½c 

½a, ½b, ½c 
~,~ ~, ½c 
1,, I b I c 2"4'2 ~ 2 

½(a - b) .  ½(a + b ) .  ec  

~(a - b) .  ~(a  + b) ,  ec  
~(a - b) ,  -~(a + b ) ,  ec  

~(a  - b) .  [ ( a  + b) ,  ec  

~(a - b), ~(a + b), ec 

½(a - b), ½(a + b), ½c 
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N o .  

82 

83 
84 

85 

86 

87 

88 

89 

90 

91 
92 

93 

94 

95 

96 
97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

I1 

12 

13 

14 

15 

16 

117 

118 

119 

120 

121 

122 

B 

S t a n d a r d  

s p a c e -  
g r o u p  

s y m b o l  

P 4 / m  

P42/m 
P4/n  

P42/ n 
14/m 

I 4 J a  
P422 

P42~2 

P4~22 
P4~212 

P4222 

P422~2 

P4~22 

P4a2t2 
1422 

I4t22 

P4mm 

P4bm 

P4~ cm 

P42nm 

P4cc 

P4nc 

P42 m c 

P42bc 

14mm 

14cm 

14lind 

141 cd 

PT12m 

P42c 

P42 ~ m 

P7~2 ~ c 

P4m2 

P7~c2 

P4b2 

PF~n2 

14m2 

I4c2 

I42m 

I7~2d 

E x t r a  c o n d i t i o n  fo r  
c h o i c e  o f  u n i t  cel l  

Origin at centre o f  symmetry 

Origin at centre of  symmetry 

Origin at centre of  symmetry 

Enant iomorph of  P4t22 

Enant iomorph of  P4t212 

Table 6 (cont.) 
D E F 

L a b e l s  
o f  a x e s  

N o n - r e d u n d a n t  
xyz  triplets Permitted origins 

A xyz, #.~ 000, 00½, nu  m~  v 2 4 ,  v 2 4  
- - -  
xyz, yxz 

i i l l  xyz, ~ye ooo, o~,  ½~o, 2~ 
xyz, ~ye ooo, oog ½'o, ½,q 
xy~ yxe ooo, oo½,1,1,o,'" 
xyz, yxe 000, 001,, 1,½0, ,,, ~H 
xy~, ~ye ooo, 001 
xyz, x#~ OOO, oo1, 

C xyz 000, 001,, 1,1,0, it_, 222 

XyZ 

c xy~ ooo, oo1,, ½½o, 1,½1, 
___ 
xyz 

E xyz 000, 00,, 1,½0, v_! 2 2 2  

xyz ooo, oo½," ,½1, HO, 
ii ill C xyz 000, 001,, ~0, ~ 

___ 
xyz 

C xyz 000, ~ t, o~, ~o, '½1, 
___  
xyz 

C h e s h i r e  
g r o u p  

14/mmm 

P 4 / m m m  
P4/  mmm 
P 4 / m m m  
P4/  mmm 
P4/  mmm 

P42/ nnm 
P4/  mmm 

P 4 / m m m  

v4222 
P4222 

P 4 / m m m  

P 4 / m m m  

C xyz 000, 001, P 4 / m m m  
___ 
xyz 

C xyz 000, 001, P42/nnm 
~1,- y l -  z 

A xyz OOz, ½1z Z i 4 / m m m  
___ 
xyz 

i t  A xyz OOz, i~z Z ' 4 / m m m  
xyz 

A x ,  y z  II OOz, ~Z Z14/mmm 
___ 
xyz 

A xyz OOz, 1,½z Z J 4 / m m m  
xyz 

,4 xyz OOz, ½1,z ZI  4/  mmm 
___ 
xyz 

,4 xyz OOz, ½1,z ZZ 4/ mmm 
xyz 

,4 xyz OOz, ½1,z Z I  4/  mmm 
___ 
xyz 

A xyz OOz, 1,,z Z J 4 / m m m  
___ 
xyz 

A xyz OOz Z t 4 / m m m  
,:.t.-. 

A xyz OOz Z I 4 / m m m  
___ 
xyz 

A xyz OOz Z I4 /nbm 
~½ - y £  

,4 xyz OOz Z 14/ nbm 
~ - y ~ .  

II !I! ,4 xyz 000, 00½, 220, 222 P 4 / m m m  
___ 
xyz 

i Ill ,4 xyz 000, 001,, ½~0, ~ P4/  mmm 
xyz 

,4 xyz ~ ¢mJ tan I,l P 4 / m m m  vvv 9 vw~ ~w 9 2~2 
- - -  
xyz 

i ii iii A xyz 000, O0 b ~0, ~ P 4 / m m m  
___ 
xyz 

,4xyz  000, 00½, ' t  " ii0, ii1, P 4 / m m m  
xyz 

A xyz 000, 00~, -t-in -ql P 4 / m m m  22 w, 222 ___ 
xyz 

,4 xyz 000, 001,, 1,½0, V_i P4/  mmm 222 ___ 
xyz 

ii A xyz 000, 00½, ~0,  ~J P 4 / m m m  [H ___ 
xyz 

A xyz 000, 001,, ntl nla 14/mmm U][4,  ~ 2 4  
- - -  
xyz 

I I  I A xyz 000, 00½, 0~, 0~ 14/mmm 
___ 
xyz 

A xyz 000, 001 , P 4 / m m m  
___ 
xyz 

`4 xyz 000, 00~ P42/ nnm 
~,½ - # ,  - z 

B a s i s  v e c t o r s  o f  
C h e s h i r e  g r o u p  

½(a - b), ½(a + b), ½c 

1,(a - b), ½(a +b), ½c 
~(a -b ) ,  ½(a +b), 1,c 
½(a-b), ½(a +b), ½c 
1,(a - b), ½(a + b), 1,c 
½(a - b), ~a + b), 1,c 
½(a- b), ½(a + b), 1,c 
1,(a - b), ½(a + b), 1,c 

½(a- b), ½(a + b), ½c 

½(a- b), 1,(a +b), ½c 
"(a-  b), 1,(a +b),  l,c 
1,(a- b), ,(a + b), ,c 

1,(a - b), 1,(a + b), Ic 

½(a - b), ½(a + b ) ,  ½c 

½<a- b), -Ra + b ) ,  , c  

½ ( a -  b), ½(a +b) ,  Ec 

, (a  - b), ' (a  + N ,  ec 

½(a - b), 1,(a + b), ec 

~(a - b), , (a  + b), ~c 

1,(a - b), J(a + b), ec 

½(a - b), 1,(a +b),  ec 

½(a - b), ½(a +b),  ec 

~(a - b), , (a +b), ec 

1,(a - b), 1,(a + b), ec 

1,(a - b), ½(a + b), ec 

, (a  - b), , (a  + b), ec 

-~(a - N ,  -',(a + b), ec 

½(a - b), ½(a + b), ½c 

, (a  - b), , (a  +b) ,  ,c  

, (a  - b), ~(a + b), 1,c 

, (a  - b), ½(a + b), ½c 

1,(a - b), 1,(a + b), 1,c 

1,(a - b), 1,(a + N ,  ~c 

½Ca - b), ½(a + b), 1,c 

I 1 I i (a - b), ~(a +b) ,  ic  

, (a  - b), , (a  +b) ,  ½c 

1,(a - b), 1,(a + b), ½c 

1,(a - b), ½(a + b), ½c 

~(a - b), 1,(a + b), 1,c 
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T a b l e  6 ( c o n t . )  

A B C D E F G 
S t a n d a r d  

s p a c e -  
g r o u p  E x t r a  c o n d i t i o n  f o r  L a b e l s  N o n - r e d u n d a n t  C h e s h i r e  

N o .  s y m b o l  c h o i c e  o f  u n i t  cel l  o f  axes  xyz t r i p l e t s  P e r m i t t e d  o r i g i n s  g r o u p  

123 P4/mmm xyz 000, 001.12120, ~½12 P4/mmm 
t! 11! 124 P4/met xyz 000, 00~, ii0, 22[ P4/mmm 

125 P4/nbm Origin at centre of  symmetry xyz ann~w, an!w2, nnzz~, 1.u222 P4/mmm 
126 P4/ nnc Origin at centre ofsymmetry xyz 000, 00~, tt0,121212 P4/ mmm 
127 e4/  mbm xyz 000, 00~, ~0, ~ P4/ mmm 
i 28 P4/mnc xyz 000, 0012, t120,12121 P4/mmm 
129 P4/ nmm Origin at centre of symmetry xyz 000, 0012, t120,121212 P4/ mmm 
130 P4/ncc Origin at centre of  symmetry xyz 000, 0012,12t0,12tt P4/mmm 
131 P42/mmc xyz 000, 0012,1t0,12112 P4/mmm 
132 P42/mcm xyz 000, 0012,12t0,1t12 P4/mmm 
133 P42/nbc Origin at centre ofsymmetry xyz 000, 00~, t~0,12112 P4/ mmm 
134 P42/nnm Origin at centre of symmetry xyz 000, 0~, ½120, ~12~ P4/ mmm 
135 P42/mbc xyz 000, 00~, 12120,1112 P4/ mmm 
136 P42/mnm xyz 000, 0012, l!n~, tlt~zz P4/mmm 
137 P42/nmc Origin at centre of  symmetry xyz 000, 00~, 110,1121 P4/ mmm 
138 P42/ ncm Origin at centre of  symmetry xyz 000, 001, t~0,12112 P4/ mmm 
139 14/mmm xyz 000, 0012 P4/ mmm 
140 14/mcm xyz 000, 001 P4/mmm 
141 14t/amd Origin at centre of  symmetry xyz 000, 0012 P42/nnm 
142 14t/acd Origin at centre of symmetry xyz 000, 00~ P42/nnm 

TRIGONAL a = b, a = fi = 90, 3' = 120 °, no extra conditions for the labelling of axes 
^^ ~2 2~ Zt6/mmm 143 P3 C xyz, ~z ,  yx~, ~ .  eez, ~z,  ~ z  

. . . . . .  xyz, xyz, yxz, yxz 
~2 2, Z~622 144 P3~ E xyz, ~ z ,  yx~, . ~  00z, ~z ,  ~ z  

145 P32 Enant iomorph of P3~ 
146 R3 Hexagonal axes C xyz, yx~ OOz Zt31 m 

xy~ yxz 
147 P3 xyz, :~z, yx~ ~ 000, 00~2 P6/ mmm 
148 R3 Hexagonal axes xyz, yx~ 000, 00½ R3m 
149 P312 C xyz, f, fz  P6/ mmm 

.~9~ xy-z ooo, oo', ~,~ t~  ~o  i~  
150 P321 C xyz, ~?z 000, 0012 P6/ mmm 

151 P3~!2 E xyz, fcfz 000, 00~,. ~0, ~o. ~'~ . . . . . .  ~0. ~ P6222 
152 P3~21 E xyz, ~ z  000, 00~ P6222 
153 P3212 Enant iomorph of  P3 t 12 
154 P3221 Enant iomorph of  P3~21 
155 R32 Hexagonal axes C xyz 000, 00~ R3m 

156 P3ml 

157 P31 m 

158 P3cl 

159 P31c 

160 R3m Hexagonal axes 

161 R3c Hexagonal axes 

162 P31m 
163 P31c 
164 P3ml  
165 P3cl 
166 R3m 
167 R3c 

Hexagonal axes 
Hexagonal axes 

xyz 
Axyz,.~fz ^^ 12 2t Zt6/mmm uuz, 3~z, 3~z 

~yz, x7~ 
A xyz, .~z OOz ZI6/mmm 

A xyz, Y,~z t2 2t zm/6mmm OOz, ~z,  ~3z 
~ xyz 

A xyz, fc~z OOz Zt6/mmm 
~.pz, xy~ 

A xyz OOz Zr31m 
___ 
xyz 

A xyz OOz ZI31 m 
___ xyz 
xyz, Y~z 000, 00~ P6/ mmm 
xyz, Yc~z 000, 00~ P6/ mmm 
xyz, ~ z  000, ~ P6/ mmm 
xyz, ~..~z 000, 00~ P6/ mmm 

xyz 000, 00~ R3m 
xyz 000,0012 R3m 

H E X A G O N A L  a = b, a = fl = 90, 7 = 120°, no extra conditions for the labelling ofaxes  

168 P6 C xyz, yx~ 

169 P6 I 
170 P6 s Enant iomorph of P6 I 
171 P62 
172 P64 Enant iomorph of P6 z 
173 P63 

174 P6  

175 P6/m 
176 P63/m 

x.VZ, yxz 
E xyz, yxi. 

E xyz, yx~. 

C xyz, yx[ 
. . . . .  xyz, yxz 

A xyz, f ~  
xyz, yxz 
xyz, yx£ 
xyz, yx~ 

B a s i s  v e c t o r s  o f  
C h e s h i r e  g r o u p  

~a - b), '~a + b). ~c 
12(a - b), ~(a + b), ~c 
½(a - b), ½(a +b) ,  Ic 
1(a - b), ~(a + b), t c 
~(a - b), 1(a +b) ,  ~c 
½(a - b), 1(a + b), ~c 
12(a - b), 12(a +b) ,  t c 
1(a - b). 1(a +b). Ic 
~(a - b), t(a + b), 12c 
t (a  - b), ~(a + b), 12c 
~a  - b), 12(a + b), Ic 
l,(a -b).  -~(a + b). 12c 
l (a  - b), ~(a + b), Ic 
12(a - b), 1(a + b), 12c 
12(a - b), ~ a  + b), Ic 
1(a - b), t (a  +b) ,  12e 
t (a  - b), t(a + b), 12c 
12(a - b), t (a  + b), 12c 
12(a - b). ~(,, + b). ~c 
12(a - b), 1(a + b), t c 

~(a - b). ~(a +2b),  e c  

~(a - b), ~(a +2b), e c  

~(a - b), ~(a +2b), ec 

~b, lc 
-b ,a+b,  lc 

~(a - b ) ,  ~(a +2b),  [c 

a,b, tc 

~ a  - b), ~(a +2b),  Ic 
o,b.~c 

-b,a+b,~c 

~(a - b), ~(a +2b) ,  ec 

a,b, ec 

~ a - b ) ,  ~(a +2b),  ec 

a,b, ec 

~a - b), ~a +2b), ec 

~(a - b), ~(a +2b) ,  ec 

a,b,~e 
~b,~c 
o,b, tc 
a,b,½c 

-b,o+b,k 
- b , a+b ,  tc 

OOz Z ' 6 /  mmm a, b, ec 

OOz ZI622 a., b, ec 

OOz ZI622 a, b, ec 

OOz Z I 6 /  mmm a, b, ec 

000, 00~, ~0, ;~12, ~]0, ~.,[~ P6/mmm ~ (a -  b), ~(a +2b),-~c 

000, 00~ P61mmm a, b, ½c 
000, 00~ P6/ mmm a, b, ½c 



E. P A R T H I ~  A N D  L. M .  G E L A T O  181 

A B 
Standard 

space- 
group 

No. symbol 

177 P622 

178 P6~22 
179 P6522 
180 P6222 
181 P6422 
182 P6322 

183 P6mm 

184 P6cc 

185 P63 cm 

186 P63 mc 

187 P6m2 

188 P6c2 

189 P62m 

190 P62c 

191 P 6 / m m m  
192 P6/  mcc 

! 93 P63/mcm 
194 P6.a/ mmc 

c D 

Extra condition for Labels 
choice of  unit cell of  axes 

Enantiomorph of P6m 22 

Enantiomorph of P6222 

T a b l e  6 ( c o n t . )  

E 

Non-redundant Cheshire 
xyz triplets Permitted origins group 

C xyz 000, 00~ P 6 / m m m  

xyz 
E xyz 000, 00~ P6222 

E xyz 000, 00~ P6422 

C xyz 000, 00~ P 6 / m m m  
___ 
xyz 

A xyz OOz Z~6 /mmm 

xyz 
A xyz OOz Z ~6/mmm 

___ 
xyz 

A xyz OOz Z*6 /mmm 
.__ 
xyz 

A xyz OOz Z~6 /mmm 
___ 
xyz 

A xyz 000, 00t, i~.O, ~ ,  ,~0, ~' .~22-t-! P 6 / m m m  
___ 
xyT, 

A xyz 000, 00~, ~0, ~.~.~, ~ . ,,0, ~I P 6 / m m m  

A xyz 000, ~ P 6 / m m m  
.__ 
xyz 

A xyz 000, 00~ P 6 / m m m  

xyT, 000, 00 t P6/  mmm 
xyz 000, 00~ P6/  mmm 
xyz 000, 00~ P6 / mmm 
xyT, 000, 00~ P6/  mmm 

Basis vectors of 
Cheshire group 

a,b, tc 

a,b, tc 

a,b, lc 

a,b, lc 

o,b, ec 

o,b, ec 

o, b, ec 

~,b, ec 

~ a  - b), ~(a +2b) , -~c  

~(a - b), ~(a + 2 b ) ,  ~c 

a,b,½c 

a.b, tc 

o,b.tc 
a.b.tc 
a,b,½c 
a.b.~ 

C U B I C  a = b = c, a = / 3  = 3' = 90", no  extra conditions for the labelling of axes 

195 P23 C xyz, yx~ 

196 F23 

197 123 

198 P2j3 

199 1213 

200 Pro3 
201 Pn~ 
202 Fro3 
203 Fd3 
204 lm3 
205 Pa3 

206 la3 
207 P432 

208 P4232 

209 F432 

210 F4j32 

211 1432 

Origin at centre of symmetry 

Origin at centre of symmetry 

Enantiomorph of P4j32 212 P4332 
213 P4t32 
214 I4t32 

215 P43m 

216 FTt3m 

217 I43m 

218 P43n 

219 FTl3c 

xyz, yxz 

C xyz, yx~ 

xyz, yxz 
C xyz, yx~. 

xyz, yxz 
C x y ~ - y l - x ~ - z  

~ f f , ~ + y ~ + x ~ + z  
C 1 J xy7,, 4 - y a -  x ~ -  z 

Xyz, a + y ,  
xyz, yx~ 
xyz, yxz 
xyz, yxE 

_._ 
xyz, yxz 
xyz, yx£ 
xyz 

I I_ !_ x,/z, 4-- y 4 x 4 7, 
C xyz 

___ 
xyz 

C x y z  
___ 
xyz 

C xyz 

C xyz 
~-~ l , - y l -7 ,  

C x y z  
___ 
xyz 

E xyz 
C xyz 

___ 
xyz 

A xyz 
___ 
xyz 

A xyz 

xyz 

A xyz 

xyz 

A xyz 
___ 
xyz 

A xyz 
___ 
x ~  

ooo. ½tt 

ooo. IlL t13. ,~ 

ooo 

ooo. ½1t 

ooo 

ooo, t31 
ooo, tlt 
ooo,111 
ooo,111 

ooo 
ooo,131 

ooo 
ooo, 111 

o0o, ~11 

ooo,111 

ooo,111 

000 

ooo,13t 
ooo 

ooo, t3t 

ooo. ~L 1tt. ,~, 

000 

i1! 000, Ht 

ooo, ItL 313, ,~ 

lm3m 

lm3m 

lm3m 

la3d 

la3d 

Im3m 
Im3m 
Pm~m 
Pn~m 

lm3m 

la3d 
lm3m 

lm3m 

Pm~m 

t'n~m 

lm3m 

14132 
la~d 

lm3m 

lm3m 

lm3m 

Imam 

lm3m 

a; b,c 

to.tb.½c 

mb, c 

a ,b ,c  

a ,b ,c  

a ,b ,c  
a ,b , c  

t~,tb,½c 
ta, tb, tc 

a ,b ,c  
a, b, c 
a ,b ,c  
a ,b ,c  

a ,b ,c  

t,~ ½b, tc 

t~tb. tc 

a,b, c 

a,b.c 
a,b ,c  

a ,b ,c  

3a, ½b, tc 

a ,b ,c  

a ,b ,c  

ta, tb, tc 
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Table 6 (cont.) 

A B C D E F G H 
S t a n d a r d  

space-  
g r o u p  Extra  cond i t i on  lo r  Labels  N o n - r e d u n d a n t  Chesh i r e  Basis vectors  o f  

No.  symbol  cho ice  o f  uni t  cell o f  axes x y z  t r iplets  Permi t ted  or igins  g roup  C h e s h i r e  g roup  

220 I7~3d A x),z 000 la3d a, b, c 
_ _ _  

xyz 
221 Pm3m xyz aria ~_lt Im3m a, b, c v v v ,  222 

222 Pn3n Origin at centre of symmetry xyz 000111 lm3m a, b, c , 2 2 2  

223 Pm3n xyz 000, ~½~ lm3m a, b, c 
224 Pn3m Origin at centre of symmetry xyz 000 u t  lm3m a, b, c ,222 
225 Fm3m xyz Ill Pm3m t i t 000, ~ ~a, ~b, ~c 
226 Fm3c xyz 000,12~ Pm3m ' '  ~o, ~b, ~c 
227 Fd3m Origin at centre ofsymmetry xyz  000, ~ Pn3m l _  I b I c 

2 " ,  2 , 2  

228 Fd3c Orlginatcentreofsymmetry xyz 000,½½~ Pn3m 2a,' 2b,' ~c 
229 Im3m xyz 000 lm3m a, b, c 

230 la3d  xyz 000 143d a, b, c 

* To change c ~  c '=  (a +c) it is necessary to shift the origin by ~0.  
t T o  change c-- ,c '=(a+c)  it is necessary to shift the origin by ~0. 
.$ The a and b axes may be interchanged if the origin is shifted by 00~; the atomic coordinates then change from xyz to y x ~ -  z. 
§ A cyclic permutation of the axes is possible. For the permutations ba~, a~b and ~ba, an origin shift v"f 44411t is necessary. The atomic coordinates then change from xyz to 

y _ l  nn t l  l x -~, ~,- z, x - 4  4 - z y  -z, and ~ - z y  -14 x - I ,  respectively. 
¶ The a and b axes may be interchanged if the origin is shifted by ~ , ;  the atomic coordinates then change from xyz to y -  ~ x -  ~ ~-z.  
** Only cyclic permutations of the axes are possible. If a < b < c cannot be obtained, then a < b is taken. 
"i't The a and b axes may be interchanged if the origin is shifted by 41410. The atomic coordinates then change from xyz to y -  ~ x - ~  ~. 
$$ Cyclic permutations of the axes are possible. For the permutations ba6, a~b and ~ba origin shifts of ~0, 41014 and 0~, respectively, are necessary. The atomic coordinates then 

change from xyz  to y - ]  x -~  ~, x -~  ~ y - ~  and gy - I  x -4t, respectively. 

Table 7. Published and standardized structure data of  
Pu3Co and Zr3Co 

Table 8. Published, standardized and shifted structure 
data for PuBr3 and TbC13 

Pu3Co Zr3Co PuBr  3 TbCI  3 
[ S R  (1963)28,  17] [ S R  (1970)35A,  53] [ S R  (1948) 11,282]  [ S R  (1964)29 ,  274] 

Cmcra,  a = 3 . 2 7 ,  b =  10.84, C m c m ,  a = 12.65. b = 4 . 1 0 ,  C m c m ,  a = 3 . 8 6 ,  b =  11.71, 
c = 8.95 ,~ c = 9.15 ,~ c =  8 .48 /~  

C m c m ,  a = 3-475, b = 10-976, 
c = 9.220 A 

x y z x y z 

4Co in4(c) 4Pu in4(c) 0.25 0 41 4Tb in 4(c) 0 0.244 
4Zr(I) in 4(c) 4Br(I) in 4(c) -0-07 0 ~ 4C1(I) in 4(c) 0 0.583 
8Zr(2) in 8(f) 8Br(2) in 8(f) 0.36 0 -0.05 8C1(2) in 8(j0 0 0-145 0.569 

x y z x y z 

4Pu(l) in4(c)  0 0.0778 ~ 0 0-74 
8Pu(2) inS(f)  0 0 .36780 .0553  0 0.424 
4Co in 4(c) 0 0.778 ~ 0 0.135 0.057 

S t a n d a r d i z e d  da t a  S t a n d a r d i z e d  da ta  
F =  1.398 F =  1.4198 

C m c m ,  same  uni t  cell C m c m ,  same  uni t  cell 

x y z x y z 

Pu(I)inS(3") 0 0.1322 0-0553 Zr( l ) in  8(f) 0 0.135 0.057 
Pu(2) in4(c) 0 0-4222 41 Zr(2) in4(c) 0 0.424 

Co in 4(c) 0 0.722 41 Co in4(c) 0 0.74 

Shift of origin of 0tz l, from No change of origin 
published data 

descriptions, given in the middle part of Table 8, 
which differ from those given in Table 7.* 

However, a shift of ~½ from the standard (lower 
part of Table 8) allows the isotypy of all four com- 
pounds to be recognized. In this case the descriptions 
of structures in Table 8 have slightly higher standar- 
dization parameters. The two halogenides certainly 
have a different bonding type from the two alloy 
structures and probably form a different structure- 
type branch; however, a discussion of structure-type 
branches is not the object of this paper. As a general 
procedure for a comparison of different related struc- 

* I n  t h e s e  p a r t i c u l a r  s t r u c t u r e s  a s m a l l  v a r i a t i o n  o f  t h e  y p a r a -  

m e t e r  o f  t h e  l a s t  a t o m  i n  t h e  s t a n d a r d i z e d  d a t a  l i s t  c a n  l e a d  t o  a 

j u m p  t o  a n o t h e r  p e r m i t t e d  o r i g i n  (y  < 0 - 7 5  o r  y -> 0 . 7 5 ) .  

S t a n d a r d i z e d  da ta  S t a n d a r d i z e d  da ta  
F =  1-4136 F =  ! .4099 

C c m m ,  a = 4.10, b = 12-65, C m c m ,  same  uni t  cell 
c = 9 - 1 5 A  

x y z x y 

Br(l) in 8(J) 0 0.36 0.05 Cl(I) in 800 0 0.355 
Br(2) in 4(c) 0 0.07 ~ C1(2) in 4(c) 0 0.083 
Pu in 4(c) 0 0-75 ~ Tb in 4(c) 0 0.744 

Interchange of a and b axes to obtain Shift of origin by 0~0 
standard space group setting from published data 

z 

0-069 

Shif t  o f  0½½ f rom s t a n d a r d  Shift  of  0½½ f rom s t a n d a r d  
F =  1.4366 F =  1.443 

x y z x y z 

Br(I) in 8(j0 0 0.14 0.05 CI(I) in 8(f) 0 0.145 0-069 
Br(2) in 4(c) 0 0.43 ~ Cl(2) in 4(c) 0 0.417 
Pu in4(c) 0 0.75 ~ Tb in4{c) 0 0"756 a l 

tures consideration is recommended not only for the 
description with the lowest standardization parameter 
but also for those with higher values. 

Practical considerations 

In view of the many possibilities of describing a 
crystal structure the normalization of crystal-structure 
data is not a simple procedure. For this reason a 
cQmputer program STRUCTURE TIDY (Gelato & 
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Parth6, 1984) has been  written which will s tandardize  
data. 

Benefits and disadvantages 

The proposed  s tandardiza t ion  allows each structure 
to be descr ibed in a un ique  way. Thus the structure 
data of  the same structure de termined in different 
laboratories will be strictly comparable .  In the case 
of  near ly  isotypic structures the s tandardized data 
allow the isotypy to be recognized by s imple  inspec- 
t ion of  the lists of  a tom coordinates provided that 
the numer ica l  values of  a tomic coordinates of  corres- 
pond ing  atoms are close.* The variat ions in a tomic 
coordinates  which still permit  isotypy to be 
recognized depend  on the structure in question. 

There may  be crystal chemical  reasons which sug- 
gest that a non-s tandard ized  structure descr ipt ion is 
more appropria te .  For example ,  in the case of  low- 
symmetry  deformat ion  variants of  basis  structures 
with h igher  symmetry  the s tandardized descr ipt ion 
may  mask  the structural re la t ionship between these 
structures (for example  rhombohedra l  variants of  
cubic structures which  have to be descr ibed in the 
s tandardized  way with a triple hexagonal  cell). The 
crysta l lographer  prefers here a descript ion with unit- 
cell d imens ions  and  atom coordinates which relate 
directly to the basis  type. It is our be l ie f  that the 
s tandardized  descr ipt ion should  never  replace any 
other descr ipt ion chosen to demonstra te  a par t icular  
re la t ionship  to other structures, but  should  be given 
as an addi t ional  description.  This presents a disad- 
vantage as both  descript ions would have to be printed.  
However,  the benefits of  a s tandardized structure 
descr ipt ion are sufficiently great that  its publ ica t ion  
should  always be included.  Last but  not least, many  
inorganic  structures are presented without  any direct 
re la t ionship  to other known structures and  the stan- 
dard descr ipt ion thus provides an unequivocal  way 
of  descr ibing the structure. 

The authors  would  like to thank the fol lowing for 
their  comments :  H. F. Braun (Geneva),  L. D. Calvert  
(Ottawa), J. D. H. D o n n a y  (Montreal) ,  M. Fornas in i  
(Genoa),  H. D. Flack (Geneva),  Th. H a h n  (Aachen),  
F. Liebau (Kiel), A. D. Mighel l  (Washington),  P. Rogl 
(Vienna), S. Rundqvis t  (Uppsala) ,  C. B. Shoemaker  
(Oregon) and  P. M. de Wolff (Delft), Special  thanks  
are due to Y. Billiet (Brest) and  W. Fischer  (Marburg)  
with w h o m  we had  many  discussions. We gratefully 
acknowledge the he lp  of  Mrs I. Jequier,  who typed 
the manuscr ip t  and  the difficult tables. 

* Four recent examples which were found by us using standard- 
ized descriptions: U3Fe2Si7 (Akselrud, Yarmolyuk, Rozhdestven- 
skaya & Gladyshevskii, 1981) is isotypie with LaaCo2Sn7 
(D6rrscheidt & Sch~ifer, 1980); BaCuSn2 (May & Schiifer, 1974) is 
isotypie with CeNiSi2 (Bodak & Gladyshevskii, 1970); Gd3Cu4Ge4 
(Rieger, 1970) is isotypic with Li4Sr3Sb4 (Liebrich, Seh~ifer & Weiss, 
1970); Y3NiSi3 (Klepp & Parth(~, 1982) has the same 'atom sites 
with similar coordinates to BaaAI2Ge2 (Widera, Eisenmann, 
Schiller & Turban, 1976). 

This study was suppor ted by the Swiss Nat ional  
Science Founda t ion  under  contract No. 2.858-0.83. 
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